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SUMMARY
Non-genetic factors can cause individual cells to fluctuate substantially in gene expression levels over time. It
remains unclear whether these fluctuations can persist for much longer than the time of one cell division. Cur-
rent methods for measuring gene expression in single cells mostly rely on single time point measurements,
making the duration of gene expression fluctuations or cellular memory difficult to measure. Here, we com-
bined Luria and Delbrück’s fluctuation analysis with population-based RNA sequencing (MemorySeq) for
identifying genes transcriptome-wide whose fluctuations persist for several divisions. MemorySeq revealed
multiple gene modules that expressed together in rare cells within otherwise homogeneous clonal popula-
tions. These rare cell subpopulations were associated with biologically distinct behaviors like proliferation
in the face of anti-cancer therapeutics. The identification of non-genetic, multigenerational fluctuations
can reveal new forms of biological memory in single cells and suggests that non-genetic heritability of cellular
state may be a quantitative property.
INTRODUCTION

Cellular memory in biology, meaning the persistence of a cellular

or organismal state over time, occurs over a wide range of time-

scales and can be produced by a variety of mechanisms. Ge-

netic differences are one form of memory (Ben-David et al.,

2018), encoding variation between organisms on multi-genera-

tional timescales. Within an organism, mechanisms involving

the regulation of gene expression encode the differences be-

tween cell types in different tissues, with cells retaining memory

of their state over a large number of cell divisions (Bonasio et al.,

2010). In contrast, recent measurements suggest that the

expression of many genes in single cells may have very little
memory, displaying highly transient fluctuations in transcription.

These rapid fluctuations have been referred to as gene expres-

sion ‘‘noise’’ and have generally been difficult to associate with

physiological distinctions between single cells (Raj and van Ou-

denaarden, 2008; Raj et al., 2006; Sigal et al., 2006; Symmons

and Raj, 2016), although there are certainly specific examples

in which such fluctuations can drive phenotype (Cohen et al.,

2008; Raj et al., 2010; Spencer et al., 2009; Wernet et al., 2006).

Less well studied is memory on intermediate timescales (i.e.,

cellular states that may persist for several divisions but are ulti-

mately transient) and thus are not indefinitely heritable (distin-

guished from the short-lived fluctuations referred to as ‘‘noise’’).

Such timescales would be long enough to allow for coordinated
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fluctuations in the expression of many genes at once in individual

cells, potentially resulting in biological activity within that cell that

is distinct from the rest of the population. Yet it remains unclear

how prevalent such longer-timescale fluctuations might be

because finding the molecular markers of these longer fluctua-

tions is difficult: current ‘‘snapshot’’ methods are unable to

distinguish between fast and slow fluctuations because they

lack any temporal component, while time lapse microscopy is

laborious and difficult to scale to all genes (Hormoz et al.,

2016; Phillips et al., 2019). Thus, we sought to develop a method

that would enable us to find genes whose expression fluctua-

tions would be maintained over several cell divisions. Ultimately,

our goal was to use these markers of slow fluctuations to identify

functionally distinct subpopulations within otherwise indistin-

guishable cells.

RESULTS

Themethodologywe developed to distinguish heritable from non-

heritable fluctuations in expression levels in single cells (Memory-

Seq) is based on the fluctuation analysis from Luria and

Delbrück’s beautiful 1943 experiments on resistance to phage in

bacteria, which they used to discriminate heritable from non-her-

itable mechanisms for resistance (Luria and Delbrück, 1943) (also

used in cancer) (Shaffer et al., 2017; Tlsty et al., 1989). In our

context of cellular memory, the experiment consisted of growing

a number of ‘‘MemorySeq clones’’ (we aimed for 48 and ended

up with 42–45 after losses from culture and library prep; see

STAR Methods for details) of isogenic melanoma cells (WM989-

A6) in individual wells, eventually growing them to around

100,000 cells per clone (Figures 1A and 1B). If a fluctuating gene

transitioned in and out of the ‘‘high’’ expression state relatively

rapidly compared to the cell division rate, then a fairly constant

proportion of those 100,000 cells would be in the high expression

state for that gene (with some dispersion due to Poisson sam-

pling). This constancy occurs because the cells do not remember

the state through cell division. At the opposite extreme, if the high

expression state was long-lived compared to the cell division

time, then if a cell occasionally moves into the high expression

state early in the family tree, all of its progeny will remain in the

high expression state, leading to a very high proportion of the final

100,000 cells being in the high expression state. Thus, acrossmul-

tipleMemorySeq clones, wewould find a high variance in the pro-

portion of cells in the high expression state in the final population,

where most clones would have low expression of that gene and a

few clones would have high expression, depending on exactly

how far up in the family trees the cells transitioned into the high

expression state. To measure variability in the proportion of cells

in the high expression state for any particular gene, we used

bulk RNA sequencing to measure the transcription of all genes

in each expanded clone, and we then measured the variability in

the expression of all genes across these clones (Figure 1B). It

was important to distinguish between biological variability be-

tween clones and variability due to sequencing, sampling, and

technical errors. We therefore also grew a large population of cells

that we split into 48 wells containing 100,000 cells each and sub-

jected those cells to RNA sequencing and gene expression anal-

ysis (Figure 1B, right).
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We first applied MemorySeq to the melanoma cell line

WM989-A6. We chose this cell line and culture system because

we had already verified the presence of rare cells within the pop-

ulation marked by the expression of a particular subset of genes

such as EGFR, NGFR, and AXL. These rare cells were strongly

associated with resistance to the targeted melanoma drug ve-

murafenib (Fallahi-Sichani et al., 2017; Shaffer et al., 2017),

and the independent observation that sibling cells often ex-

pressed the same genes suggested that these genes displayed

some degree of memory (Shaffer et al., 2017). Thus, in this sys-

tem, we have already identified several genes that are both asso-

ciated with a phenotype and appear to exhibit some degree of

heritability. These genes naturally serve as positive controls for

the MemorySeq methodology.

Upon performing MemorySeq in this cell line, we first checked

the distribution of expression levels across MemorySeq clones

for a number of previously identified resistance-associated

genes and non-resistance-associated genes (Figure 1C, herita-

ble genes) (Shaffer et al., 2017). As hoped, we found that the

resistance-associated genes displayed far greater variability

across clones than the technical noise controls. Conversely,

housekeeping genes and other genes that do not exhibit much

cell-to-cell variability showed variances across MemorySeq

clones that were much more similar to that of the technical noise

controls (Figure 1C, non-heritable genes). Intriguingly, MYC, a

proto-oncogene for which we have seen high levels of cell-to-

cell variability, showed little increased variance across clones

compared to controls, suggesting that its transcriptional mem-

ory was much lower than that observed for resistance-associ-

ated genes (Padovan-Merhar et al., 2015) (Figure 1C). We

observed similar behavior for CCNA2, a cell-cycle gene whose

expression would similarly be expected to vary from cell to cell

but not exhibit much heritability due to cell cycle desynchroniza-

tion (Figure 1C) (Chao et al., 2018).

Given that RNA sequencing provides expression levels across

the transcriptome, MemorySeq is able to measure heritability in

the expression of all genes at once. Thus, we analyzed expres-

sion variance across clones for all genes. We found that for

many genes across a range of average transcription levels,

variance across clones was much higher than technical noise

controls, suggesting that those genes exhibited high levels of

transcriptional memory (Figure 1D). We found that genes with

higher expression levels typically had systematically lower vari-

ance across clones. By explicitly fitting this relationship, we

could identify genes as high-memory based upon their large re-

siduals from the fit. We generated a panel of high-memory genes

with residuals in the 98th percentile or greater, and with a mini-

mum expression level of 1.5 transcripts per million to eliminate

spurious inclusion of lowly expressing genes, resulting in 227

genes identified as potentially having high heritability in

WM989-A6 (alternative cutoffs and robustness analysis for this

gene set provided in Figures S1A and S1B).

Our experimental design predicted that a gene whose expres-

sion exhibits high variability across MemorySeq clones would

occasionally initiate high levels of expression that would persist

across multiple cell divisions but would not persist indefinitely.

We sought to directly confirm these expression characteristics

by using time-lapse microscopy to trace the expression state
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Figure 1. MemorySeq Can Identify Genes with High Transcriptional Memory

(A) Rare-cell gene expression patterns, both with and without heritability. Histograms of single-cell expression levels are unable to discriminate between these

two alternatives.

(B) Schematic of MemorySeq experiment. We started with a singlemelanoma cell (WM989-A6), grew it to�100 cells, then , from these, seeded single cells into 48

separate wells and allowed the cells to proliferate to around �100,000 cells before subjecting the entire MemorySeq clone to RNA sequencing to determine

expression levels. In the case of non-heritable expression, the levels of expression would not vary dramatically between MemorySeq clones, whereas in the

heritable case, some clones would exhibit much higher levels of expression when a cell moved into the high expression level state early in the family tree of the

clone. To determine how much variability in expression would arise for purely technical reasons, we also performed control experiments by plating around

�100,000 cells directly into individual wells and performing RNA sequencing.

(C) Expression histograms across n = 43 MemorySeq clones for genes identified as non-heritable (left) or heritable (right).

(D) Coefficient of variation versus mean expression levels for all 23,669 genes that we analyzed across all MemorySeq clones. Points labeled with blue dots (on

MemorySeq clones plot) or pink dots (on noise controls plot) passed the threshold for being identified as a heritable gene. These genes were identified by first

fitting a Poisson regression model to the data, and then selecting genes with residuals in the top 2%. This approach identified 227 heritable genes from the

MemorySeq clones, but only 30 genes passed this threshold in the noise control condition. Particular genes from the panel in (C) are labeled on both plots.

See also Figure S1.

ll

Please cite this article in press as: Shaffer et al., Memory Sequencing Reveals Heritable Single-Cell Gene Expression Programs Associated
with Distinct Cellular Behaviors, Cell (2020), https://doi.org/10.1016/j.cell.2020.07.003

Article
of individual cells for three genes. For one gene (NGFR), we were

able to genetically tag the gene using a split-fluorescent protein

approach (see STAR Methods) to fuse mNeonGreen2(11) to

NGFR (producing the NGFR-mNG2 protein). We used that cell

line to track NGFR-mNG2 levels by fluorescence microscopy
over a period of 8.75 days (Figure 2; see Figures S2A–S2D for

cell line validation; single allele tagged, which may affect the

levels of variability as compared to total protein). The vast major-

ity of cells displayed essentially no fluorescent signal, but as pre-

dicted, occasional rare cells within the population displayed high
Cell 182, 1–13, August 20, 2020 3
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Figure 2. Time-Lapse Microscopy Verifies Rare, High-Expression States that Persist for Several Cell Divisions but Are Ultimately Transient

We generated a cell line (WM989-A6-G3 C10-C2 clone E9) that expresses a large but incomplete (and thus nonfluorescent) portion of the mNeonGreen2

fluorescent protein with the remaining piece of mNeonGreen2 fused to NGFR at the endogenous locus. When the NGFR fusion protein is expressed, the re-

maining portion of mNeonGreen2 binds to the NGFR fusion protein and becomes fluorescent. We then performed time-lapse microscopy imaging of the NGFR-

mNG2 protein (nucleus labeled with H2b-iRFP670) at 6-h intervals for 8.75 days.

(A) We tracked cells through several cell divisions, thus building cellular lineages, and quantified fluorescence intensity for each cell. The plot shows two branches

from the same parent cell with fluorescence intensity of mNeonGreen2 over time.

(B) Series of fluorescent micrographs of the two cells highlighted in (A). Images are subfield views taken from scans comprising several image tiles; boundaries in

the image arise from edges between individual tiles. Scale bar, 8 mm.

(C) Correlations between sibling cells, first-cousins, and random pairs of cells (n = 486, 292, and 905, respectively).

(D) We stained cells with antibodies targeting AXL and EGFR, then sorted positive cells, plated them on a glass dish, and took images of their immunofluo-

rescence signal. Subsequently, we acquired transmitted light images every hour for 8.67 days to facilitate tracking of cell lineages, and then we performed

immunofluorescence again to measure EGFR and AXL levels at the end of the tracking period. From the time-lapse images, we tracked selected lineages that

initially contained cells with high levels of EGFR and AXL. The red dots on the left images correspond to the red arrow on the histogram for an example initial cell

subjected to tracking. Upon division, we colored the tracks of the sibling cells green and blue, respectively. The EGFR and AXL levels for these cells in their final

state are indicated by the green and blue arrows on the histograms on the right. Scale bars, 10 mm.

See also Figure S2.
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levels of fluorescence.We then tracked 222 cell lineages through

several cell divisions (examples of positive cells in Figures 2A

and 2B; Video S1). We observed that cells would occasionally

initiate high levels of expression of NGFR-mNG2 (compare top

branch versus bottom branch), and once initiated, that high level

of expression could be maintained through multiple cell divi-

sions, thus confirming the presence of memory. Further demon-

strating the transience of this high expression state, we also

observed cells transitioning from the high state to low levels of

expression, with an average time in the high state of 40 h; how-

ever, a few cells showed longer fluctuations in NGFR levels

ranging from 4.25–5.25 days (Figures S2E–S2G for discussion

of analysis).

Another prediction of long-lived but imperfect memory is that

sibling cells should show greater correlation in expression levels

than cousins. Confirming this prediction, we observed that the

correlation of expression between recently divided sibling cells

was higher (R = 0.58) than between cousins (R = 0.43), although

both values were higher than that between unrelated cells in the

population (R = 0.04) (Figure 2C). Demonstrating the phenotypic

significance of these fluctuations in expression levels, we further

found that cells expressing high levels of NGFR-mNG2 at the

time of vemurafenib addition were much more likely to continue

to proliferate in drug (Figure S2L; Videos S2 and S3).

We wanted to verify that the high-expression state is transient

for other genes, but it proved technically challenging to

genetically tag genes such asAXL and EGFR. We thus used fluo-

rescent antibodies to label AXL and EGFR, used fluorescence-

activated cell sorting (FACS) to isolate the high population,

seeded that population on an imageable surface, and performed

time-lapse microscopy on the transmitted light images in order

to trace lineages of these cells (Figures 2D and S2). At the end

of 8.67 days, we fixed the cells and performed immunofluores-

cence in situ, followed by imaging to measure AXL and EGFR

levels. We were able to track a total of 53 cells (26 for AXL and

27 for EGFR) (originating from 4; 2 each for AXL and EGFR), of

which we could confidently re-identify 29 after the second round

of immunofluorescence. Of these, we observed that 15/15 and 6/

14 of these cells starting from those that initially had high levels of

AXL and EGFR (higher than all the negative cells) (Figure 2D),

respectively, eventually turned off (<75th percentile) within the

time window of 8.67 days (Figures 2D, S2J, and S2K), demon-

strating that the EGFR or AXL high state is indeed transient.

(We further verified this heritable but ultimately transient

expression behavior by using FACS to isolate highly expressing

cells and measuring the degree to which the expression levels in

these cells reverted toward the distribution from the original pop-

ulation, finding a variety of timescales ranging from 5–9 days

(Figures S3A–S3C, S3F, and S3G). Note that we observed an

initial increase in expression for some of these genes upon sort-

ing, which may be due to the stress associated with flow sorting

or paracrine signaling in the concentrated subpopulation.)

Although time-lapse microscopy provided direct evidence of

the long-lived fluctuations predicted by MemorySeq, it is difficult

to perform for a panel of genes owing to the challenges associ-

ated with editing genes, especially those whose expression is

very low in most cells. Thus, we sought another method to

confirm these heritable fluctuations for a larger panel of genes.
First, we performed experiments in fixed cells grown on culture

dishes tomeasure heritability in gene expression by using spatial

proximity as a proxy for relatedness. We seeded cells sparsely in

culture dishes and then allowed them to grow for �10 days, at

which point we fixed the cells and subjected them to iterative sin-

gle-molecule RNA fluorescence in situ hybridization (FISH) to

measure the expression of 19 genes with a range of MemorySeq

values (Figure S1C) in individual cells while preserving their

spatial context (Figure 3A) (Shaffer et al., 2017). Genes with

highMemorySeq signals also displayed rare-cell expression pat-

terns as expected (Figure S4D). Our reasoning for this approach

was that as cells divide, their spatial proximity would reflect their

relatedness (Hormoz et al., 2016). In the case of a gene with non-

heritable expression, one would expect to find no spatial corre-

lation in which cells were deemed high expressing within the

population. In contrast, for genes with heritable expression,

one would expect to find the high-expressing cells to appear in

patches corresponding to related neighboring cells that share

a common ancestor that transitioned to the high-expression

state. We found that genes identified by MemorySeq as being

highly heritable (e.g., EGFR, NGFR, NDRG1, and SERPINE1)

tended to show patch-like expression patterns across large

numbers of cells, confirming that their expression was indeed

heritable. In contrast, genes that MemorySeq would predict to

not be heritable exhibited a more salt-and-pepper (variable but

not heritable) expression pattern, as expected (Figures 3B,

S4A, and S4C).

We wondered to what extent MemorySeq could measure dif-

ferences in heritability of the high expression state for different

genes. We therefore compared the degree of heritability from

MemorySeq (given by the amount of skewness in the distribution

of expression across MemorySeq clones) to the degree of heri-

tability from spatial RNA FISH analysis (given by the amount of

patchiness in the population). We found a strong correspon-

dence between these two metrics (adjusted R2 = 0.6193), sug-

gesting that MemorySeq can stratify genes by the gradations

in the degree of heritability that they display (Figure 3C; see Fig-

ure S4C for further analysis).

The timescales of particular genes turning between high (ON)

and low (OFF) expression states should in principle be quantita-

tively related to the measured variability across the MemorySeq

clones, with high variability corresponding to slow switching and

vice versa. We thus analyzed a stochastic model of cell prolifer-

ation and switching relating these two quantities (STAR

Methods) (Singh and Hespanha, 2010). Under the assumption

that the ON state is relatively rare, this model yielded a direct

relationship between the coefficient of variation measured by

MemorySeq multiplied by the fraction of the time the cell is in

the ON state and the predicted memory (number of generations

cells are ON before turning OFF), with the only further parameter

being the total number of divisions in the MemorySeq experi-

ment. This equation predicted that over a relatively large range

of reasonable parameters, (coefficient of variation [CV] �0.5–2,

fraction of time on �0.01), the predicted memory was mostly in

the range of 5–10 divisions, matching our experimental observa-

tions (Figures S2 and S3).

Motivated by our previous work in this cell line, we also looked

for correspondences between the degree of heritability and the
Cell 182, 1–13, August 20, 2020 5
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Figure 3. Single-Molecule RNA FISH Verifies the Quantitative Nature of MemorySeq for Measuring Heritability in Single Cells

(A) Schematic of spatial RNA FISH experiment. We platedWM989-A6melanoma cells sparsely on a dish and allowed them to grow for 10 days. We then fixed the

cells and performed iterative single-molecule RNA FISH to measure the expression of 19 genes. Closely related cells will remain in close proximity, thus heritable

rare-cell expression would manifest as ‘‘patches’’ of ‘‘on’’ cells, whereas non-heritable rare-cell expression would display a more salt-and-pepper pattern of

expression. Right: micrographs of RNA FISH for 4 genes, EGFR (heritable), NGFR (heritable), EEF2 (housekeeping), and GAPDH (housekeeping).

(B) Each spot is a cell from an RNA FISH image scan of 12,192 cells (subset of 2,103 cells shown). Cells above a threshold (6 for EGFR, 36 for NGFR, and 320 for

EEF2) were considered to be in the high expression state and colored green.

(C) Quantitative comparison of heritability as measured by MemorySeq (x axis: skewness across MemorySeq clones) and spatial RNA FISH analysis (y axis). We

used the Fano factor measured for spatial bins of 20 nearest cells as a spatial clustering metric; randomly placed high-expression-state cells would display a

Poisson distribution and thus give a Fano factor of 1. Cell populations with a Fano factor greater than 1 would display some degree of spatial clustering. Of note,

this plot and the plot in (D) contain 18 of the 19 genes that we quantified with RNA FISH because 1 gene (CYR61) did not pass the minimummean transcripts per

million cutoff for analysis in the MemorySeq data.

(D) We plotted MemorySeq heritability versus the Gini coefficient (from RNA FISH). The Gini coefficient measures expression inequality, and thus indicates the

rareness of expression, with 0 being completely equal and 1 being completely unequal.

(E) Rare cells within clonal WM989-A6 populations marked by high levels of NGFR protein were sorted, cultured for 8–16 h, and then subjected to trametinib

treatment at 10 nM (MEK inhibitor) for 3 weeks. Image shows the number of resistant colonies (circled) along with number of cells within the resistant colony as

indicated. Biological replicate available on Dropbox.

See also Figure S4.
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rarity of gene expression as measured by the Gini coefficient, a

metric for inequality (Jiang et al., 2016; Shaffer et al., 2017; Torre

et al., 2018). We observed that indeed the two metrics were

correlated (adjusted R2 = 0.4898) (Figure 3D), suggesting that

heritable genes identified by MemorySeq are more likely to ex-

press only in rare cells. This correspondence may be due to

the design of the MemorySeq experiment, in which skewness

can reach potentially higher levels for more rarerly expressing

genes than for less rarely expressing ones.

Having validated that MemorySeq was accurately identifying

genes displaying transcriptional memory, we then asked what

these genes were and what their expression in rare cells signi-

fied. The underlying hypothesis was that these slow fluctuations

are more likely to be associated with distinct cellular behaviors in
6 Cell 182, 1–13, August 20, 2020
those cell subpopulations than fast fluctuations. Our reasoning

was that a distinct cellular behavior would likely require a persis-

tently different gene expression pattern, involving deviations in

the expression of several genes simultaneously, as opposed to

a transient (and, as we hypothesized, probably inconsequential)

fluctuation. In this melanoma cell line, we have previously shown

that rare cells have high levels of expression of certain genes

associated with therapy resistance (including EGFR, NGFR,

and AXL), and that these rare cells are much more likely to sur-

vive the initial application of drug to develop into resistant clus-

ters. Thus, we first wondered whether the set of genes identified

by MemorySeq that mark rare cells overlapped with the set of

genes associated with resistance. We found that most Memory-

Seq heritable genes (162 out of 227) were also markers of
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Figure 4. MemorySeq Reveals a Rare Subpopulation of MDA-MD-231-D4 Cells Associated with Drug Resistance

(A) Most MDA-MD-231-D4 cells die upon treatment with paclitaxel for 5 days, but a small subpopulation of cells (cell marked with ‘‘’’?) survive and become

resistant (red cell).

(B)We performedMemorySeq analysis onMDA-MD-231-D4 cells (n = 39 clones, left; n = 46 control clones, right). The blue colored dots correspond to genes that

we statistically identified as being highly heritable by fitting a Poisson regression model and selecting genes with residuals in the top 2%, as was done

with WM989.

(C) We stained cells with antibody targeting the CA9 surface marker and then sorted out the top 0.5% of cells and the lowest 5%. After culturing for 5 days, we re-

stained the cells and measured CA9 levels by flow-cytometry. Potential outcomes for the levels of CA9 staining depending on the degree of gene expression

memory. Observed outcome below for CA9 staining 5 days after initial sorting.

(D) We stained cells with antibody targeting the CA9 surface marker and then sorted out the top 2%–4% of cells, the lowest 2%–4% of cells, and the total ‘‘mix’’

population into chamber wells, after which we applied paclitaxel 1 day after sorting for 5 days. Transmitted light micrographs show the number of cells remaining

after drug treatment for the different populations, and the quantification of the number of cells was performed using cell counting based on nuclear identification

by imaging the DAPI nuclear stain and identifying computational techniques. All scale bars are 50 mm long.

See also Figure S3.
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resistance (as determined by Shaffer et al., [2017]) (Figures S4I

and S4J). These results suggest that the genes identified by

MemorySeq are expressed in cell populations that are pheno-

typically distinct from the bulk of the population.

To verify the phenotypic differences of these cells, we used

FACS to isolate cells by either high levels of NGFR or EGFR

expression, and then we subjected them to treatment with a tar-

geted inhibitor of MEK (trametinib) used to treat melanoma. On

unsorted populations, upon treatment with this drug, a small per-

centage of cells will continue to grow and form colonies,

mimicking the acquisition of drug resistance. In congruence

with previous results, the EGFR/NGFR-high subpopulations re-

sulted in far more resistant colonies after application of the

drug, showing that this subpopulation is highly enriched for

pre-resistant cells (Figure 3E). This result demonstrated that

MemorySeq revealed the same subset of cells that we had pre-

viously determined to be highly enriched for drug resistant cells.

Our results thus far highlight MemorySeq’s ability to prospec-

tively reveal functionally distinct subpopulations within clonal
populations of apparently homogeneous cells. In the case of

the WM989-A6 melanoma cell line, we had already established

the existence of such a subpopulation, but for most cell lines,

there is little to no information about single-cell fluctuations

that exhibit memory and thus may also be associated with

distinct phenotypes. We thus set about testing MemorySeq in

another cell line, MDA-MB-231-D4, which is a clonal derivative

of a triple negative breast cancer cell line (does not express

HER2, estrogen, or progesterone). Paclitaxel is a drug used to

treat such breast cancers, but while it is able to kill most MDA-

MB-231-D4 cells, some cells in the population are still able to

survive the drug, thus leading to drug resistance (Figure 4A).

However, prospective markers to isolate the subpopulation of

cells that are resistant to drug have remained elusive (Gao

et al., 2017), and we hypothesized that MemorySeq might be

able to reveal genes whose expression was associated with

this single-cell phenotype.

To test this hypothesis, we performed MemorySeq on the

MDA-MB-231-D4 cell line by growing each of 48 subclones to
Cell 182, 1–13, August 20, 2020 7
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Figure 5. MemorySeq Enables the Identification of Coordinated Rare-Cell Expression Programs

(A) We measured correlations between genes across MemorySeq clones derived from WM989-A6 melanoma cells. Shown is an example correlation between

MMP1 and SERPINB2 across 43 MemorySeq clones.

(B) Correlations between all pairs of genes exhibiting heritability as determined by the threshold described in Figure 1. Cook’s distance analysis to test for outliers

is given in Figure S1D.

(legend continued on next page)
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around 100,000 cells, after which we performed RNA

sequencing and quantification as described for WM989-A6. As

with the melanoma cell lines, MemorySeq revealed a large num-

ber of genes in the MDA-MB-231-D4 cell line with putative heri-

table expression patterns (230 genes, Figure 4B). The range of

variability in expression levels for all genes across the Memory-

Seq clones (most genes having low variability, but a few showing

high variability) was comparable to that identified byMemorySeq

for the WM989-A6 cell line. Interestingly, however, the overlap

between the gene sets was relatively small (Figure S1L; Table

S1), suggesting that different cell lines may have distinct sets

of ‘‘memory genes’’ and that there is no universal ‘‘memory

gene’’ expression program (with a potential exception noted

below). As with WM989, we confirmed both the rarity and herita-

bility of the expression pattern by using RNA FISH on cells

initially seeded sparsely and then allowed to grow in place for

10 days, as done for the melanoma lines (Figure S1F, compare

to Figure 3C).

Given the existence of these rare, slowly fluctuating subpopu-

lations in the MDA-MB-231-D4 cells, we next asked whether

these newly identified subpopulations were associated with

phenotypic differences such as differential sensitivity to pacli-

taxel. Among the genes identified by MemorySeq was CA9, a

surface marker known to be negatively associated with breast

cancer chemosensitivity (Aomatsu et al., 2014; Span et al.,

2003), but for which there was no reason to suspect that its

expression at the single-cell level would be indicative of which

cells specifically survived upon drug treatment. We thus immu-

nolabeled the MDA-MB-231-D4 cells using antibodies targeting

CA9 and then used FACS to isolate a rare population of CA9-high

cells (top 2%–4%, along with CA9-low and mixed subpopula-

tions; validation of sorting in Figure S1M), after which we added

paclitaxel to both and grew the cells for 5 days (Figure 4D). We

found that, when treated with 1 nM of paclitaxel, the CA9-high

cells were more likely to be resistant than either the CA9-low

or mixed subpopulations (Figure S1N). Furthermore, the sorted

subpopulations reverted to the population average, demon-

strating that the CA9-high state is ultimately transient (Figures

4C, S3H, and S3I). These results, in a cancer cell line of a

completely different type involving a drug with a completely

different mechanism of action, demonstrate that MemorySeq is

able to identify de novo heritable, rare-cell expression states,

and these states are phenotypically distinct from the others in

the population.

Behavioral differences such as drug resistance are typically

associated with the differential expression of many genes at

once. We thus further hypothesized that the long timescale of

these single-cell fluctuations could allow for significant co-fluc-
(C) Comparison of coherence between MemorySeq bulk RNA sequencing analys

performed RNA FISH on 20 genes in WM989-A6 cells, keeping for further analys

maining). The correlation between bulk MemorySeq RNA sequencing levels is on

cells between MMP1 and SERPINB2 in single cells.

(D) Community detection within the network defined by the correlation matrix of c

that did not comprise a network community. Green and red indicate the two comm

analysis results shown for both communities.

(E) Comparison of rare-cell expression programs identified by MemorySeq and t

fluorescent antibody labeling followed by RNA sequencing on the high versus m

See also Figure S5.
tuation; that is, if a cell expresses a high level of one high-mem-

ory gene for a sufficiently long time period, it could also have a

higher probability of expressing another slowly fluctuating gene

simultaneously. Indeed, should such a phenomenon be preva-

lent, it would allow us to organize these high memory genes

into characteristic modules of genes that co-fluctuate in sin-

gle cells.

To isolate such modules, we calculated the correlation coeffi-

cient between the expression of all pairs of heritable genes

across the MemorySeq clones derived from WM989-A6. We

reasoned that if a particular clone had a high abundance of a

particular transcript, then the abundance of transcripts of co-

fluctuating genes would also be high in that particular clone.

We saw large blocks of genes whose expression appeared to

correlate strongly with each other, suggesting that they co-fluc-

tuate at the single-cell level (Figure 5B). To validate that the pro-

grams so identified by MemorySeq corresponded to single-cell

correlations, we compared the correlations between Memory-

Seq and RNA FISH in single cells on a panel of genes across

two separate clusters. We found a general correspondence be-

tween these two assays, suggesting that MemorySeq is able to

identify groups of genes de novo that co-fluctuate in rare-cell

expression programs (Figures 5C, S4G, and S4H). (The expres-

sion of some genes appeared tomismatch betweenMemorySeq

and single-molecule RNA FISH, potentially due to mutually

exclusive expression patterns in rare cells or due to short-lived

transition states.) We observed similar clustering in another mel-

anoma cell line (WM983B-E9) (Figure S1I) andMDA-MB-231-D4,

although the specific genes were typically different (Figure S1E).

We also performed MemorySeq on the lung cancer cell line PC-

9, which showed a total of 240 heritable genes, including 8 genes

that were heritable in all of the other cell lines on which we per-

formed MemorySeq (WM989, WM983B, and MDA-MB-231)

(Figures S1G, S1H, and S1L).

The appearance of distinct clusters of slowly co-fluctuating

genes led us to use community detection algorithms for network

data to demarcate these groups of genes for further analysis. We

used a weighted version of k-clique community detection (Deré-

nyi et al., 2005; Jonsson et al., 2006; Palla et al., 2005) to identify

such groups of genes (Figure 5D) (see STAR Methods for more

information). We chose k-clique community detection because

it allows for nodes to be inmultiple communities at once, echoing

the ability of a protein to simultaneously play multiple roles within

the cell. In WM989-A6 cells, one large community of genes over-

lapped very strongly with the vemurafenib pre-resistancemarker

gene set that we identified earlier (Shaffer et al., 2017). We veri-

fied this correspondence by comparing the transcriptomes of

sorted subpopulations of EGFR-high cells to the clusters of
is and single-cell correlations as measured by single-molecule RNA FISH. We

is genes whose RNA FISH Gini coefficient was greater than 0.6 (13 genes re-

the left, RNA FISH on the right. Callout shows raw RNA FISH counts for 12,192

o-expression patterns among the heritable genes. Gray circles indicate genes

unities detected; KEGG pathway and Gene Ontology (GO) biological process

hose identified by sorting EGFR-high (top) or NGFR-high (bottom) cells (using

ix populations).
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genes identified by MemorySeq, showing that the expression

levels of genes specifically in this cluster correlated well with

that of genes that correlated with EGFR expression (Figure 5E).

We also found other communities within the set of heritable

genes in WM989-A6 cells, suggesting the existence of multi-

ple independent heritable gene expression programs. One

prominent program included DDX58 (RIG-I), IFIT1, PMAIP1,

and OASL, which may be related to type 1 interferon signaling

(Loo and Gale, 2011), and was notable because it also ap-

peared to some extent in MDA-MB-231-D4 and WM983B-E9

(Table S1). We verified that this cluster expressed in a distinct

rare-cell subpopulation from that containing EGFR and AXL by

performing RNA FISH for PMAIP1, DDX58, AXL, and EGFR

simultaneously. This analysis showed that PMAIP1 and

DDX58 expression exhibited very strongly correlated rare-

cell expression, but neither correlated to much extent with

either AXL or EGFR expression, and both genes’ expression

also exhibited memory (Figures S4E–S4H). This cluster ap-

peared relatively distinct from the primary community associ-

ated with drug resistance and EGFR expression, and indeed,

did not show any association with the EGFR-high transcrip-

tome (Figure 5E). Another community in WM989-A6 cells

was somewhat less coherent and included genes such as

VGF. VGF expression also showed strong heritability (Fig-

ure 3C), but its expression appeared not to correlate with

the other pre-resistance genes at the single-cell level (Fig-

ure 5E) and was not associated with the drug resistance

phenotype (Shaffer et al., 2017).

The fact that multiple genes appeared to coordinate their

expression across multiple chromosomes suggested that the

mechanism for maintaining memory occurs in trans i.e.,

through the regulatory milieu rather than just a short but

intense pulse of transcription from a single allele that is main-

tained through cell division. Labeling sites of nascent tran-

scription for EGFR and AXL (Levesque and Raj, 2013) re-

vealed that transcriptional bursting also occurred in patches

(as opposed to just transcript abundance), further suggesting

that memory of the high expression state was due to sus-

tained transcriptional activity as opposed to a single sporadic,

large, transient burst of transcription in a precursor cell (Fig-

ures S3D and S3E). Moreover, we often observed multiple

active transcription sites active within a single cell, confirming

that the fluctuations in expression were not the result of a fluc-

tuation at just one allele (Figures S5J and S5K). We also per-

formed allele-specific expression analysis from the RNA

sequencing data across MemorySeq clones to confirm these

results across a broader swath of MemorySeq genes. We

found that fluctuations appeared to occur across both alleles

simultaneously, further suggesting that fluctuations are driven

by transactivation rather than pulses at a single allele of a

given gene (Figure S5H).

We sought to identify regulatory factors that may be

responsible for the unique behavior of MemorySeq genes.

We first utilized ATAC-seq profiling on WM989-A6 cells

(Shaffer et al., 2017) to reveal regions of DNA with increased

chromatin accessibility in the vicinity of the genes identified

by MemorySeq. We searched these regions for sequence mo-

tifs matching known transcription factor binding sites, and
10 Cell 182, 1–13, August 20, 2020
found enrichment for motifs corresponding to SOX10 and

the FOS/JUN and NFAT families of transcription factors

compared to accessible regions surrounding randomly cho-

sen expression-matched control genes (Figure S5E). To vali-

date these associations, we knocked out a total of 6 transcrip-

tion factors from these families and performed RNA

sequencing to measure changes in expression (Torre et al.,

2019). As suggested by our ATAC-seq analysis, knockout of

4 of these transcription factors showed strong effects on

MemorySeq gene transcription (FOSL1, JUNB, NFAT5, and

SOX10) and 2 showed small effects (JUN and NFAC2) (Fig-

ure S5F). The manner by which such factors may act to

change the expression of these genes is unknown, but we

did look for specific signatures of histone marks around Mem-

orySeq genes. We observed depletion of H3K27 acetylation

(H3K27ac) marks typically associated with active transcription

and gain of H3K27 trimethylation (H3K27me3) marks typically

associated with repression (again, compared to expression-

matched control genes). These associations suggest that

the fluctuations may result from an inability to sustain ongoing

expression due to this distinct pattern of histone acetylation

and methylation (Figures S5A–S5D).

DISCUSSION

In sum, we believeMemorySeq is a simple but powerful method

for identifying rare, heritable expression patterns in cells. We

have shown here that such rare, heritable expression programs

may be related to non-genetic mechanisms of therapy resis-

tance in cancer (Pisco and Huang, 2015; Roesch et al., 2010;

Shaffer et al., 2017; Sharma et al., 2010; Spencer et al.,

2009). However, they may also be important in other contexts

in which rare cells behave differently than the rest of the popu-

lation, both in cancer (such asmetastasis), but also in otherwise

healthy tissues or in cellular reprogramming contexts like the in-

duction of induced pluripotent stem cells (iPSCs) (Hanna

et al., 2009).

The mechanisms underlying these fluctuations remain myste-

rious. We identified some transcription factors that can affect

expression of these genes and found patterns of histone acety-

lation that are associated with these genes as well. Further work

will be required to test other potential models of gene regulation

that could lead to fluctuations, such as methylation patterns or

other regulatory mechanisms that may operate on the relevant

timescales (Meir et al., 2020). Other potential mechanisms

include autocrine or paracrine signaling, by which cells are

able to sustain longer fluctuations by signaling feedback to

themselves or nearby relatives.

It is also interesting that MemorySeq is quantitative in the

sense that it is not just able to report that a gene’s expression

is heritable but is also able to provide a relative sense of how her-

itable that expression is, meaning how many cell divisions are

required before cells begin to forget the rare-cell expression

state. By revealing such intermediate timescales of fluctuation,

the results of MemorySeq suggest that the classic use of the

concept of somatic epigenetics (non-genetic heritability) may

require re-evaluation as a quantitative, rather than qualitative,

property of some cellular states.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-EGFR antibody Millipore Cat#MABF120; clone 225; RRID:

AB_11205738

donkey anti-mouse IgG AlexaFluor488 Jackson Laboratories Cat#715-545-150; RRID: AB_2340846

anti-NGFR PE-Cy7 antibody Biolegend Cat#400126; clone ME20.4; RRID:

AB_326448

anti-AXL antibody Novus Cat#AF154; lot DMG0516031; RRID:

AB_2861155

bovine anti-goat IgG AlexaFluor647 Jackson Laboratories Cat#805-605-180; RRID: AB_2340885

anti-CA9 PE antibody Miltenyi Biotec Cat#130-110-057; clone REA658; RRID:

AB_2651325

Bacterial and Virus Strains

Endura electrocompetent E. coli Lucigen Cat#60242

One Shot STBL3 chemically

competent E. Coli

Thermo Fisher Cat#C737303

Chemicals, Peptides, and Recombinant Proteins

DAPI, dilactate Thermo Fisher Cat#D3571

CellTraceViolet Invitrogen Cat#C34557

7-AAD Biolegend Cat#420404

Trametinib (GSK1120212) Selleckchem Cat#S2673

Vemurafenib (PLX4032) Selleckchem Cat#S1267

Paclitaxel Life Technologies Cat#P3456

Cy3 Mono-reactive dye pack GE healthcare Cat#PA23001

AlexaFluor 594 NHS Ester Invitrogen Cat#A37572

Atto 647N NHS Ester ATTO-TEC Cat#AD 647N-31

Atto 700 NHS Ester ATTO-TEC Cat#AD 700-31

EnGen Cas9 NLS, S. pyogenes NEB Cat#M0646M

Agencourt AMPure XP Beckman Coulter Cat#A63881

MCDB 153 Sigma; prepared by University of

Pennsylvania Cell Center

Cat#M7403

Leibovitz L-15 Medium Thermo Fisher Cat#11415064

DMEM, high glucose, GlutaMAX, pyruvate Thermo Fisher Cat#10569010

RPMI 1640 Thermo Fisher Cat#11875085

Fetal Bovine Serum Fisher scientific Cat#16000044

Propidium Iodide BD Biosciences Cat#556463

Penicillin/Streptomycin Thermo Fisher Cat#15140148

Critical Commercial Assays

miRNAeasy RNA extraction mini kit QIAGEN Cat#217004

NEBNext Poly(A) Magnetic Isolation

Module

NEB Cat#E7490L

NEBNext Ultra RNA sequencing library prep

kit for Illumina

NEB Cat#E7530L

EnGen sgRNA Synthesis Kit, S. pyogenes NEB Cat#E3322S

NEBNext Multiplex Oligos for Illumina (Dual

Index Primers Set 1)

NEB Cat#E7600S
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

RNA sequencing data This paper GEO: GSE151375

RNA sequencing data Shaffer et al., 2017 GEO: GSE97679

ATAC sequencing data Shaffer et al., 2017 GEO: GSE97680

RNA sequencing data Torre et al., 2019 GEO: GSE151825 and https://www.

dropbox.com/sh/0olkoxmaobssl44/

AAAKPLdADB1_sB-j8lhhP7Eja?dl=0

ChIP-seq data Verfaillie et al., 2015 GEO: GSE60666 and http://ucsctracks.

aertslab.org/papers/melanoma_paper/

RNA sequencing data Verfaillie et al., 2015 GEO: GSE60666

ChIP-seq data Franco et al., 2018; Xi et al., 2018 GEO: GSE85158

RNA sequencing data Franco et al., 2018; Xi et al., 2018 SRA:SRP102239

Experimental Models: Cell Lines

WM989 Laboratory of Meenhard Herlyn Krepler et al., 2017; Shaffer et al., 2017

WM983b Laboratory of Meenhard Herlyn Krepler et al., 2017; Shaffer et al., 2017

MDA-MB-231 ATCC ATCC HTB-26

PC-9 Laboratory of Matthew Lazzara Buonato and Lazzara, 2014

Oligonucleotides

RNA FISH probes This paper Table S2

mNG2(11) HDR template This paper Table S3

NGFR sgRNA This paper Table S3

Recombinant DNA

mNG2(1-10) lentivirus plasmid Laboratory of Bo Huang Feng et al., 2017

H2b-iRFP lentivirus plasmid This paper N/A

Software and Algorithms

STAR version 2.3.0e Dobin et al., 2013 https://github.com/alexdobin/STAR

HTSeq version 0.6.1 Anders et al., 2015 https://github.com/htseq/htseq

Samtools version 0.1.19 Li et al., 2009 https://github.com/samtools/samtools

NGSUtils Breese and Liu. 2013 https://github.com/ngsutils/ngsutils

RajLabImageTools This paper https://github.com/arjunrajlaboratory/

rajlabimagetools

R version 3.6 R core team https://www.R-project.org/

MATLAB Mathworks https://www.mathworks.com/products/

matlab.html

Deeptools version 3.3.0 Ramı́rez et al., 2016 https://deeptools.readthedocs.io/en/

develop/

Freebayes version 1.3.2 Garrison and Marth. 2012 https://github.com/ekg/freebayes

bcftools version 1.9 Narasimhan et al., 2016 http://samtools.github.io/bcftools/

phASER Castel et al., 2016 https://github.com/secastel/phaser

Analysis of Motif Enrichment (AME) McLeay and Bailey. 2010 http://meme-suite.org/index.html

DESeq2 Love et al., 2014 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Gephi Bastian et al., 2009 https://gephi.org/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Arjun Raj

(arjunrajlab@gmail.com).
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Materials Availability
All materials and reagents generated as part of this study will be made available upon installment of a material transfer agree-

ment (MTA).

Data and Code Availability
Sequencing data generated as part of this study are available on GEO under the accession number GEO: GSE151375. In addition,

these data and code used for their analysis are available on Dropbox at https://www.dropbox.com/sh/f90osuwxak1f9vj/

AAAOWsxAudr77aT1bhzLNb69a?dl=0.

EXPERIMENTAL MODEL AND SUBJECT AVAILABILITY

Cell lines and culture
We used 4 cell lines in our study: WM989-A6, which is a subclone of the melanoma line WM989 (Wistar Institute, a kind gift of Meen-

hard Herlyn); WM983B-E9, a subclone of WM983B (a kind gift of Meenhard Herlyn, Wistar Institute); MDA-MB-231-D4, a subclone of

MDA-MB-231 (ATCC HTB-26) and PC-9-D11, a subclone of PC-9 (a kind gift from Matthew Lazzara, University of Virginia). We veri-

fied all cell lines by DNA fingerprinting:WM989-A6 andWM983B-E9were performed at theWistar Institute byDNASTRMicrosatellite

testing and MDA-MB-231 and PC-9 were performed by ATCC human STR profiling cell line authentication services. We cultured the

melanoma cell lines in TU2% (containing 80%MCDB 153, 10% Leibovitz’s L-15, 2% FBS, 2.4mMCaCl2 and 50 U/mL penicillin, and

50 mg/mL streptomycin), the MDA-MB-231 cell lines in DMEM10% (DMEM with glutamax, 10% FBS and 50 U/mL penicillin, and

50 mg/mL streptomycin) and the PC-9 cell lines in RPMI10% (RPMI 1640, 10% FBS, 2mM glutamax, and 50 U/mL penicillin, and

50 mg/mL streptomycin) .

METHOD DETAILS

MemorySeq
Our experiment roughly followed the design of Luria and Delbrück’s original fluctuation analysis, but with RNA sequencing as the

terminal readout instead of the number of resistant colonies. From the parental cell line (WM989-A6, WM983B-E9, MDA-MB-231-

D4), we isolated a single cell, let it proliferate until reaching roughly 100-200 cells, then plated these cells into a 96 well plate at a

dilution in which we expected roughly 0.5 cells per well. From these wells, we isolated �100 clones for further expansion, excluding

wells that were seeded with more than 1 cell. Of the 100 starting clones, we aimed for 48 clones from each cell line for downstream

analysis. We grew the clones until they reached a minimum of around 100,000 cells, with some reaching as high as roughly 200,000

cells. At that point, we used miRNAeasy RNA extraction kit to isolate RNA from each clone, followed by library preparation using the

NEBNext Poly(A) Magnetic IsolationModule and NEBNext Ultra RNA sequencing library prep kit for Illumina. At the time of RNA isola-

tion for the clones, we also isolated 48 separate samples of 100,000 cells from the parental line and prepared these samples for RNA

sequencing as controls. For each cell line, we sequenced a total of 96 samples, including 48 clones and 48 controls from amixture of

the parental cell line. We sequenced to a depth of at least 500,000 reads per RNA sequencing library (with a typical depth of around 4

million reads) on a NextSeq500 (Illumina). While we targeted 48 clones and 48 controls for each cell line, we had a few samples with

poor RNA quality and occasionally lost samples when preparing the libraries. Therefore, after culturing, extracting RNA, and prepar-

ing libraries, we ended up with 39-46 clones total for each cell line for our analysis (43 clones for WM989, 46 clones for WM983B, 39

clones for MDA-MB-231, and 42 clones for PC-9). We aligned the reads using STAR and enumerated uniquely mapped read counts

per gene using HTseq (Anders et al., 2015; Breese and Liu, 2013; Dobin et al., 2013; Li et al., 2009); pipeline available at https://github.

com/arjunrajlaboratory/RajLabSeqTools).

For computational analysis of the Luria-Delbruck RNA sequencing data, we calculated the transcripts per million of every gene in

each sample. We then calculated metrics of the variation across the different 48 clonal samples, including the coefficient of variation,

skewness, and kurtosis. We also compared these metrics in the clonal samples to those observed in the mixed controls. We found

that the relationship between the coefficient of variation and the transcripts per million for every gene could be fit by a Poisson regres-

sion model. We fit this model for each cell line and then defined the panel of heritable genes as those with residuals greater than the

98th percentile. We also set aminimum level of expression for heritable genes as 1.5 transcripts per million forWM989 andMDA-MB-

231 and 1.5 transcripts per million for WM983B. This approach yielded 227 heritable genes in WM989, 230 heritable genes in

WM983B, 230 heritable genes in MDA-MB-231, and 240 heritable genes in PC-9 (listed in Table S1). We generated correlation

matrices from the pairwise Pearson correlation coefficients for heritable genes across all clones. We calculated the Cook’s distance

for the pairwise correlations to determine sensitivity to outliers (Figure S1D). For a few pairs, the correlation coefficient was deemed

sensitive to the presence of outliers. This sensitivity is to be expected because of the experimental design; as per Luria and Del-

brück’s fluctuation analysis, there will be rare outlier cultures. Given that we did not observe such outlier cultures in our technical

controls, we believe that these outlier cultures reflect true biological variability. Computational analysis of RNA sequencing data is

available on the Dropbox here https://www.dropbox.com/sh/7z0n6ixshghdvlo/AADb7cY9ZGFMF1CRbLJpnYQSa?dl=0 and

https://www.dropbox.com/sh/vykm0gu0afy39dm/AAAjPMibwX5LfaPWHnpD5k67a?dl=0.
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Generation of NGFR-mNG2 reporter cell line
To create the NGFR-mNG2(11) WM989-A6-G3 cell line, we used the split mNeonGreen2(mNG2) system described in Feng et al.

(2017). In brief, we first transduced WM989-A6-G3 with 10/11ths of mNG2, which is non-fluorescent without the remaining 1/11th

of the protein. We then electroporated cells with Cas9 RNP containing a guide RNA specific to the C terminus of NGFR and a

single-stranded DNA template encoding the remaining 1/11th of the protein flanked by sequences homologous to the targeted locus

(sequences available in Table S2 and at https://www.dropbox.com/sh/pqjropgxr1u5xd3/AACEgMjetkmINp_l0Df8ujSUa?dl=0). We

then isolated fluorescent cells by FACS and generated clonal cell lines by serial dilution. To verify in-frame integration of themNG2(11)

construct, we PCR amplified the C terminusNGFR locus from cell lysates and cloned the amplicon into a recipient plasmid. Half of the

resulting plasmids contained the in-frame mNG2(11) sequence and the remaining half contained the unedited NGFR sequence

without substitutions, insertions or deletions. Sanger sequencing traces are located here: https://www.dropbox.com/sh/

65rvfs3pka5zii4/AAAwBZOynkB4rU9NJvCo_RJha?dl=0. We further confirmed that mNG2 fluorescence correlates with NGFR

mRNA abundance at the single-cell level by single-molecule RNA FISH and validated that the NGFR-mNG2(11) WM989-A6-G3

cell line recapitulates phenomenology described in Shaffer et al. (2017), showing increased resistance to vemurafenib in the

mNG2-high cells (Figure S2; experiments described in RNA FISH, FACS, and drug treatment methods below). We also demonstrated

that the localization of the protein was identical to that of the endogenous protein by comparing theNGFR-mNG2 fluorescence to that

of the signal produced by immunofluorescent labeling of NGFR (Figure S2). To facilitate cell tracking in the time-lapse images, we

transduced cells lines inwhichwe taggedNGFRwithmNG2(11) with lentivirus encoding H2B-iRFP670which localizes to the nucleus,

thus enabling us to track cell nuclei. Following transduction, we derived clonal cell lines by serial dilution before imaging. All plasmid

sequences are available here: https://www.dropbox.com/sh/wpgyfup6gwiyaeb/AAC0gRgg0dmBJoUlypvSDWnIa?dl=0.

To validate that cells with high levels of NGFR-mNG2 (as measured by fluorescence) were more resistant to vemurafenib, we tryp-

sinized and pelleted the NGFR-mNG2(11) WM989-A6-G3 cell line, washed cells once with PBS containing 2mM EDTA, then resus-

pended in PBS containing 2mM EDTA and 100ng/mL propidium iodide or 200ng/mL 7-AAD and proceeded with sorting. Using a

MoFlo Astrios (Beckman Coulter) or FACSJazz (BD Biosciences), we isolated the top 0.5%–1% of mNG2 fluorescent cells and equal

numbers of the bulk population gated only for live cells. We then treated these samples with vemurafenib as described in the drug

treatment methods below. All flow cytometry data is available on Dropbox here: https://www.dropbox.com/sh/9bq1eg0k5o0q452/

AACunY5g1xtp5lxSIox1OqOka?dl=0.

Fluorescence-Activated Cell Sorting (FACS)
We stained WM989-A6-G3 melanoma cells for fluorescence-activated cell sorting using antibodies for EGFR and NGFR. We note

that while we stained for both proteins, we did not isolate enough EGFR-high cells for testing trametinib resistance in all three rep-

licates. First, for EGFR staining, we trypsinized 40-50million cells, washed oncewith 0.1%BSA-PBS, and incubated for 1 hour at 4�C
with 1:200mouse anti-EGFR antibody in 0.1%BSA-PBS. Next, wewashedwith 0.1%BSA-PBS and then incubated for 30minutes at

4�C with 1:500 donkey anti-mouse IgG labeled with Alexa Fluor 488. We washed the samples again with 0.1% BSA-PBS and then

incubated for 10 minutes at 4�C with 1:250 anti-NGFR antibody conjugated directly to PE-Cy7 in 0.5% BSA-PBS with 2mM EDTA.

Finally, we washed the samples with 0.5% BSA-PBS containing 2mM EDTA, then resuspended in 1% BSA-PBS containing 100ng/

mL propidium iodide or 200ng/mL 7-AAD and proceeded with sorting using a MoFlo Astrios (Beckman Coulter) or FACSJazz (BD

Biosciences). To aid with gating, we incubated control samples without the anti-EGFR primary antibody and with a PE/Cy7 mouse

IgG1 isotype control. After gating for live cells, we collected either the top 0.02%–0.2% EGFR-high cells or the top 0.5% NGFR-high

cells. We also collected equal numbers of the bulk population by using the same gating for live cells, but without gating on either the

EGFR or NGFR stains.

To monitor the dynamics of AXL expression, we stained WM989-A6-G3 melanoma cells for fluorescence-activated cell sorting by

trypsinizing 40-50 million cells, washing once with 1% BSA-PBS, and incubating for 30 minutes at 4�C with 1:50 goat anti-AXL anti-

body in 1%BSA-PBS. Next, we washed the cells twice with 1%BSA-PBS and then incubated for 30 minutes at 4�Cwith 1:85 bovine

anti-goat IgG labeled with Alexa Fluor 647. Finally, we washed the samples with 1% BSA-PBS, then resuspended in 1% BSA-PBS

containing 100ng/mL propidium iodide or 50ng/mL DAPI and proceeded with sorting. After gating for live cells, we collected the top

0.5%–1% AXL-high cells and equal numbers of the lowest 80%–95% AXL-low cells, then plated cells onto glass-bottom chamber

plates. After 1, 3, 6 or 9 days in culture, we fixed the sorted cells for RNA FISH as described below. To account for cell growth and

changes in cell density, we plated fewer cells for later time points. We performed a similar set of experiments for EGFR and NGFR

using the staining procedure described above. For NGFR, we re-stained the sorted population after 7 days in culture (following the

same procedure described above) and assessed NGFR intensity by flow cytometry using the same instrument as the initial sort.

To monitor the dynamics of CA9 expression in MDA-MB-231 cells, we trypsinized cells, washed once with 0.1% BSA-PBS then

stained with anti-CA9 antibody conjugated to phycoerythrin (PE) at a dilution of 1:11 in 0.1% BSA-PBS for 30 minutes at 4�C. After
staining we washed the cells twice with 0.1% and resuspended in 0.1% BSA-PBS containing 200ng/mL 7-AAD and proceeded with

sorting. After gating for live cells, we sorted the top 0.5%–2%CA9-high and the bottom 5%–10%CA9-low cells. For 2 of 3 replicates,

we stained the sorted cells with 2.5-5mM CellTraceViolet in PBS at 37�C for 20 minutes, followed by 2 washes with media. We then

culture the cells for 5 days before re-staining the cells and measuring CA9-PE and CellTraceViolet intensities by flow cytometry.

For testing the response of CA9-high cells to paclitaxel, we stained MDA-MB-231 cells as described above then sorted the top

2%–3% of CA9-high, the bottom 2%–3% CA9-low, and a mixed population using only the live cell gates (CA9-mix). After allowing
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the sorted cells to adhere overnight, we began treatment with 1nM paclitaxel as described below. We performed single-molecule

RNA FISH for CA9 mRNA confirming that sorting with CA9 antibody enriched for CA9-high expressing cells (Figure S1M).

Live-cell immunofluorescence
We stained and sorted AXL-high and EGFR-high cells as described above, then proceeded with live-cell imaging on a Nikon Ti-E

inverted microscope enclosed in a temperature-controlled and humidified chamber at 5% CO2. We acquired an initial set of images

measuring Alexa Fluor 488 and Alexa Fluor 647 fluorescence to verify that the cells indeed had high protein levels, then proceeded to

scan the slide (20xmagnification) in brightfield every hour for 8 days and 16 hours.We then incubated the live cells with 1:80 goat anti-

AXL antibody or 1:200 mouse anti-EGFR antibody in TU2% for 1 hour at 4�C followed by two washes with TU2%, secondary incu-

bation with 1:250 bovine anti-goat Alexa647 or 1:250 donkey anti-mouse Alexa488, and two final washes with TU2%. After this re-

staining, we imaged these live cells for Alexa Fluor 488 and Alexa Fluor 647 fluorescence at 20x magnification and quantified fluo-

rescence intensity using rajlabimagetools available: https://github.com/arjunrajlaboratory/rajlabimagetools and custom MATLAB

scripts available at https://www.dropbox.com/sh/zrc0g9vtxewcctl/AABVYCaXHYyvWFPOx4ipXLJGa?dl=0.

Drug treatment experiments
Wemade stock solutions of 4mM trametinib, 4mM vemurafenib, and 4mMpaclitaxel. For drug treatment experiments, we diluted the

stock solutions in culture medium to a final concentration of 10nM for trametinib, 1mM for vemurafenib, and 1nM for paclitaxel. For

trametinib treatment experiments, we sorted WM989-A6 subclone G3 by NGFR levels as described in the FACS section of Methods

and then cultured them for 2-3 weeks. For vemurafenib experiments, we cultured the FACS sorted NGFR-mNG2 WM989-A6-G3 in

vemurafenib for 21 days. For paclitaxel experiments, we cultured CA9 FACS sortedMDA-MB-231 cells in paclitaxel for 5 days. At the

end of all drug treatment regimens, we fixed each sample in 4% formaldehyde for 10 minutes, permeabilized the sample in 70%

ethanol, and then performed cell quantification.

Time-lapse imaging
We acquired time-lapse images of the NGFR-mNG2WM989-A6-G3 cell line using two different imaging platforms. First, for data of the

WM989 NGFR-mNG2 cell line growing without drug, we used a Nikon Ti-Emicroscope encased in a plexiglass chamber ventilatedwith

heated air and CO2.We took images at 60xmagnification of mNG2 fluorescence every 6 hours and images of the iRFP nuclear reporter

(H2B-iRFP670) every hour for 8.75days.Wechose these time intervals basedonpilot experimentsweperformed tominimizeovert signs

of phototoxicity (cell death, growth inhibition, nuclear morphology changes) and enable the tracking of cell lineages. Second, for data in

whichwe cultured these cells and then treatedwith vemurafenib,we used an IncuCyte S3 LiveCell Imaging Analysis System (Sartorius).

We cultured the NGFR-mNG2 cell line on a 96-well plate inside the IncuCyte, which is fully contained within an incubator for long-term

cultureand time-lapsemicroscopy.With this system,weacquired images ingreen, red,andbrighfieldusinga10Xobjectiveat intervalsof

2 hours over a total of 14.8 days. We added 500nM of vemurafenib after 6 days and 4 hours in culture, and then changed themedia with

vemurafenib every 3 days. We used these two different imaging platforms for their distinct advantages. The high magnification Nikon

system allowed for the most accurate quantification of the mNeonGreen2 signal, allowing us to measure the length of time of the

NGFR fluctuations. Meanwhile, the IncuCyte is a more stable environment for time-lapse imaging that therefore induced less stress

on the cells, and thus we used this platform for the longer experiments, particularly involving the additional stress of drug treatment.

RNA FISH
Wedesigned custom oligonucleotide probe sets complementary to our genes of interest using custom probe design software written

in MATLAB (code freely available for non-commercial use here https://flintbox.com/public/project/50547/) and ordered themwith an

amine group on the 30 end from Biosearch Technologies (probe sequences available in Table S2). We pooled 15-32 oligonucleotides

targeting each gene and coupled each set of probes to either Cy3, Alexa Fluor 594, Atto 647N or Atto 700.Weperformed single-mole-

cule RNA FISH as described in Raj and van Oudenaarden (2008) for multiple cycles of hybridization (Shaffer et al., 2017). We fixed

cells in 4% formaldehyde solution for 10 minutes at room temperature, permeabilized in 70% ethanol, and stored samples at 4C. For

hybridization, we first washed samples with washing buffer containing 10% formamide and 2x SSC. We then applied hybridization

buffer containing customRNAFISH probes and 10% formamide, 2x SSC, and 10%dextran sulfate.We hybridized samples overnight

at 37�C and then performed two cycles of 30 minute washes at 37�Cwith washing buffer. For imaging, we first DAPI stained the cells

and then transferred them to 2x SSC.

RNA FISH imaging
We imaged RNA FISH samples on an inverted Nikon TI-E microscope with a 60x Plan-Apo or a 100x Plan-Apo using filter sets for

DAPI, Cy3, Atto647N, Alexa594, and Atto700.We took images in either z stacks of 30 planes at 0.3mm intervals using custom journals

built in Metamorph or tiled grids of single-plane images using Metamorph Scan Slide Application. We used a Nikon Perfect Focus

system to maintain focus across the imaging area.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Cell quantification
We quantified cell numbers for drug treatment experiments by fixing the cells, staining with DAPI, then imaging across the majority of

the well via image scanning at 20x magnification. After scanning, we computationally stitched the images together, after which we

used custom software written in MATLAB to identify nuclei, which is publicly available here: https://github.com/arjunrajlaboratory/

colonycounting_v2.

Time-lapse analysis
For tracking cell lineages and quantifying fluorescence signal of the NGFR-mNG2 WM989-A6-G3 cell line, we developed a set of

publicly available tools for tracking cells in time-lapse images (https://github.com/arjunrajlaboratory/timelapseGUI). First, this pipe-

line uses an automated algorithm for nuclear segmentation to identify all the cells in each image.We then used a combination of auto-

matic assignment of parents alongwith human-supervised annotation to fix errors to obtain lineage information. Next, we quantify the

fluorescence signal from the NGFR-mNG2 by using the nuclear segment from each cell and calculating mean and median fluores-

cence intensity across these segments (Figure S2). Of note, for the time-lapses of AXL-high and EGFR-high sorted cells that lacked

the H2B-iRFP670 nuclear marker, we had to manually mark all the cells that we wanted to analyze because the lack of nuclear

markers precluded automatic segmentation. This samemethod of analysis was applied to all data acquired on the IncuCyte platform.

Our subsequent analysis consisted of building a custom data structure in MATLAB to contain each lineage and a series of plotting

functions to allow us to plot the fluorescence intensity from an entire lineage (or part of a lineage) over the length of these experiments.

For the lineages derived from AXL-high and EGFR-high sorted cells, the final frames were manually registered to images acquired

after repeated immunofluorescence staining of live cells. The code for all the downstream processing is available on the Dropbox

here: https://www.dropbox.com/sh/q2kbatojibljg8j/AABiFvNvsQm288tC3n-4qn5Za?dl=0 and https://www.dropbox.com/sh/

zrc0g9vtxewcctl/AABVYCaXHYyvWFPOx4ipXLJGa?dl=0.

RNA FISH image analysis
For analysis of gridded image scans, we used customMATLAB software designed for the analysis in (Shaffer et al., 2017). This pipe-

line consists of first segmenting the nuclei of individual cells using DAPI images. Next, the software calculates regional maxima for all

RNA FISH dyes and then the user specifies a global threshold for calling individual spots. Through a GUI interface the user then re-

views the high expressing cells and uses editing tools to remove artifacts or autofluorescent debris. Lastly, we constructed tables

containing RNA FISH spot counts for each gene in individual cells.

For image z stacks, we used custom MATLAB software to count spots for each cell. Briefly, this image analysis pipeline includes

manual segmentation of cell boundaries, thresholding of each channel in each cell to identify individual spots, and then extraction of

spot counts for each gene in each cell. The software for analysis of RNA FISH images is available on bitbucket here https://github.

com/arjunrajlaboratory/rajlabimagetools. After extracting spot counts from either data format, we performed the remainder of the

analysis of mRNA distributions in R. We calculated Gini coefficients (as described in Jiang et al., 2016) for each gene using the

‘‘ineq’’ package. The code for this analysis is on the Dropbox here https://www.dropbox.com/s/n8cppr17b3bgssf/

gini_coef_analysis.R?dl=0.

Spatial analysis
We used spatial single-cell analysis to enable us to independently measure the heritability of high expression states. We sparsely

plated cells (WM989-A6, MDA-MB-231-D4, WM983B) on a 2-well chambered coverglass, and then we allowed the cells to grow

for 10 days (sometimes fewer days for MDA-MB-231-D4 if the cells grew faster), at which point we performed iterative RNA FISH,

image analysis, and thresholding for high expression as described above. Intuitively, the stronger the heritability (i.e., over several

generations), the larger the clusters of high-expressing cells we would find. To quantify clustering, we created, for each cell in the

dataset, a ‘‘bucket’’ consisting of the 20 (or 50, 100, 200) closest cells and then kept track of the number of high-expressing cells

in that bucket. We then computed the variance and the mean of this number across all buckets, allowing us to then calculate the

heritability index, which is the Fano factor (defined as the variance divided by the mean). In the case of complete spatial randomness,

the distribution would be Poisson, and the heritability index would be 1. To verify this null distribution, we permuted the label of cells

as jackpots or non-jackpots uniformly at random 1000 times, and re-computed the heritability index for each permutation. This

approach allowed us to compute 95% confidence intervals for the null distribution given our particular spatial configuration of cells;

the data for null distributions is not shown, but is available online here: https://www.dropbox.com/sh/m1rdxjrfeo6be3m/

AADphkUBGT0zgppppssP_LbSa?dl=0.

ATAC sequencing analysis
Using previously published ATAC sequencing data from EGFR-high sorted WM989-A6 cells, we identified peaks within each of the

227WM989MemorySeq genes (including 10 kb upstream and 10 kb downstream) (Shaffer et al., 2017).We included peaks present in

2 of 2 biological replicates and merged overlapping regions with a point-source peak to peak distance of less than 500 bp. For com-

parison, we used these same data to identify peakswithin TPM-matched, control gene sets.We generated these control gene sets by
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taking the expression of each MemorySeq gene (average TPM across MemorySeq clones) and randomly sampling a gene with

similar expression levels (+/� 20%). We includedMemorySeq genes in the sampling set and sampled without replacement to obtain

gene sets with equal numbers of unique genes. We repeated this sampling procedure 100 times to generate 100 TPM-matched, con-

trol gene sets.

We then used the Analysis of Motif Enrichment (AME) tool from the MEME suite to identify enriched motifs underlying peaks near

MemorySeq genes compared to each of the control gene sets (McLeay and Bailey, 2010). For AME, we used the average odds score

and Fisher’s exact test to measure motif enrichment and the HOCOMOCO Human v11 CORE database match enriched motifs to

transcription factors (Kulakovskiy et al., 2018). We then summarized and plotted results using R (v3.6). All datasets are available

at http://www.dropbox.com/login?cont=https%3A%2F%2Fwww.dropbox.com%2Fwork%2FPapers%2Fcancerpaper_public%

2Fdata%2FATACseq and all scripts are available at http://www.dropbox.com/login?cont=https%3A%2F%2Fwww.dropbox.com

%2Fwork%2FPapers%2Fmemoryseq%2Fcode%2FATACanalysis.

RNA sequencing analysis of WM989-A6-G3 knockouts
We accessed RNA sequencing count data for 266 CRISPR/Cas9 knockouts of WM989-A6-G3 (Torre et al., 2019). These data

included knockouts for 84 genes (2-6 replicates using distinct sgRNAs for each) and 10 control samples transduced with non-target-

ing sgRNAs. For each gene we used DESeq2 to calculate log2 fold change in expression compared to the non-targeting control

samples(Love et al., 2014). The RNA sequencing count data can be found https://www.dropbox.com/sh/zold8icu30h6njc/

AAC4BJOIz-uWGU0DU5SOcDzYa?dl=0 and scripts used for analysis can be found https://www.dropbox.com/sh/

wtbk6j0umxgovwi/AABbzGg7sIuqh2I_umU4nRpSa?dl=0 and https://www.dropbox.com/s/7ly259ou1fm8lsk/plotKOenrichment.

R?dl=0

Allele-specific expression (ASE) analysis
To identify variants in MemorySeq data we first aligned the RNA sequencing reads to hg38 (reference available at https://www.

dropbox.com/sh/dpxfu9vowd9rgxw/AABUd3d1_Eg3VgWEtCU45CCja?dl=0) using STAR (v2.7.1a), then filtered unique alignments,

andmarked duplicate alignments (Dobin et al., 2013). Next, we combined alignments from all MemorySeq clones and used freebayes

(v1.3.2) to identify biallelic variants with hg38 as the reference (Garrison andMarth, 2012). We repeated this procedure separately for

the 48 control clones (see MemorySeq Methods above and Figure 1). Using bcftools, we filtered heterozygous variants with a min-

imum quality score of 30 and minimum depth of 5 reads then took the intersection of variants identified in both MemorySeq clones

and control clones to remove mutations present in a small subset of clones (Narasimhan et al., 2016). All scripts for this analysis are

available at https://github.com/arjunrajlaboratory/memSeqASEanalysis and the final list of variants is available on dropbox at https://

www.dropbox.com/sh/yinthy6f2u7pwwu/AACqf_4WSFow6njp8xzzTRYca?dl=0 (under {cell line}/freebayes/{cell line}.singleRG.-

freebayes.intersect.Q30.DP5.het/0002.vcf.gz). With these lists of variants, we used phASER to count uniquely mapped, allele spe-

cific reads for each individual clone (Castel et al., 2016). We then summarized and plotted these data using customR scripts available

at https://www.dropbox.com/sh/l607yt9vu4dlr3n/AAAofMByQ4KYTdQWm6zlxj_Va?dl=0.

ChIP sequencing analysis
We downloaded H3K27 acetylation (H3K27Ac) and tri-methylation (H3K27me3) ChIP-sequencing coverage data and matched RNA

sequencing data from 11 melanoma cell lines from (Verfaillie et al., 2015). With the RNA sequencing data, we generated TPM-

matched control gene sets by randomly sampling genes whose expressionmatched eachMemorySeq gene (+/� 20%). MemorySeq

genes were included in the sampling set and we sampled without replacement to obtain gene sets with equal numbers of unique

genes. For both WM989 and WM983b MemorySeq genes we separately generated 100 control gene sets using each of the 11 mel-

anoma samples. For each of the ChIP-sequencing datasets, we then used deepTools to calculate the ChIP-sequencing coverage

flanking the transcription start site (+/� 2,000 bp in 10 bp bins) for MemorySeq genes and TPM-matched control gene sets (Ramı́rez

et al., 2016).

For MDA-MB231 cells, we downloaded H3K4 trimethylation (H3K4me3), H3K9 acetylation (H3K9Ac), H3K79 dimethylation

(H3K79me2), H3K27Ac and H3K27me3 ChIP sequencing coverage data and matched RNA sequencing data from (Franco et al.,

2018; Xi et al., 2018). As described for the Memory Seq analysis, we aligned the RNA sequencing data to hg19 using STAR and

counted alignments using HTSeq. We generated TPM-matched control gene sets and calculated ChIP-sequencing coverage flank-

ing the transcription start sites of MemorySeq and control gene sets as described above. We then summarized and plotted these

data using R. All datasets are available at https://www.dropbox.com/sh/mjw5n5zeau9lpwb/AAD6uCZ4fFU8c36izOJ35B9aa?dl=0

and analysis scripts are available at https://www.dropbox.com/sh/zr6f9rggepmhx8y/AACzfQzAVvWFiKgGQ7BOatzxa?dl=0 and

https://www.dropbox.com/sh/mwmq7kegnw6h4yq/AAD0f1YZZip0tyy7p9R2eE8va?dl=0.

We used the RefSeq hg19 annotations for determining transcription start sites rather than the Ensembl annotations used for RNA

sequencing as we observed better aligned coverage profiles across genes using RefSeq annotations. However, �7% of MemorySeq

genes (11/227 for WM989, 16/230 for WM983b and 15/230 for MDA-MB231) were not uniquely identified in the RefSeq annotation and

were excluded from this analysis, including the initial sampling procedure. We observed lower levels of activating chromatin marks and

slightly elevated levels of repressivemarks near MemorySeq genes using either RefSeq or Ensembl transcription start site annotations.

Both reference files are available at https://www.dropbox.com/sh/sf93jf48p7u1q0e/AABt6Od4AeOMABFb6pl9f881a?dl=0.
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Network community identification
For each pair of significantly heritable genes (from gene lists described in the MemorySeq RNA sequencing analysis section of the

Methods), we calculated the Pearson correlation coefficient between their expression across clones. This procedure resulted in a

symmetric weighted matrix of size 227 genes x 227 genes in WM989 (and 230 genes x 230 genes in WM983B, as well as

MDA-MB-231-D4). We represent these matrices as undirected weighted networks with nodes corresponding to genes, and with

the weight of edges between nodes corresponding to the value of the correlation coefficient. Within this network, we sought tightly

connected groups of nodes within this network known as network communities. We performed k-clique community detection (Der-

ényi et al., 2005; Jonsson et al., 2006; Palla et al., 2005) with k = 4 on binarized networks created by thresholding the original weighted

network at decreasing values (Giusti et al., 2015; Rieck et al., 2018). More specifically, a k-clique is a collection of k nodes that are all-

to-all connected and a k-clique community is a collection of k-cliques that are connected through adjacent k-cliques (two k-cliques

are adjacent if they share k-1 nodes). Repeatedly thresholding the network at decreasing values of the edge weight creates a

sequence of binary graphs, each of which is included in the next. Since the addition of edges to a binary graph can only enlarge

or merge k-clique communities, we can track communities from one binary network to the next in a well-defined manner. This map-

ping allows us to both observe which nodes were included in the community at slightly lower threshold values and to qualitatively

assign statistical significance to communities based on the range of threshold values for which they stay isolated from the rest of

the network. All networks shown in figures were visualized with Gephi (Bastian et al., 2009).

Inferring timescale of expression heritability from MemorySeq
Wemodeled gene expression as a binary switch, where individual cells were either in an high (ON) or low (OFF) expression state. We

assumed that cells proliferated exponentially at a rate kx (i.e., a generation time of 1/kx), and that each MemorySeq clone began as a

single cell, ultimately growing into the final population. Wemade two simplifying assumptions: i) The proliferation rate of a cell was the

same irrespective of its ON/OFF state; and ii) The population remained in the exponential growth phase during the time span of the

experiment. Further, cells in the OFF state turned ONwith rate kON, and reverted back to the OFF state with rate kOFF . We defined f =

kON=ðkON + kOFFÞ as the fraction of ON cells in the original population, and further assumed (as indicated by our experimental data)

that the ON state was rare, i.e., f << 1.

To model Luria-Delbrück fluctuation analysis, we sampled a single cell from the original population, which was ONwith probability

f, and OFF with probability 1� f. Starting with this initial condition, we defined the random variables xðtÞand yðtÞ to be the number of

cells in theON andOFF states, respectively, at time t. The time evolution of integer-valued randomprocesses xðtÞand yðtÞis governed
by proliferation (with probabilities kxxdt and kxydt) and switching between the ON and OFF states (with probabilities kOFFxdt and

kONydt). The ratio xðtÞ/(xðtÞ + yðtÞ) represented the fraction of ON cells at time t, and our goal was to quantify fluctuations in this ratio

across MemorySeq clones. To do this, we derived the time evolution of the first two statistical moments of xðtÞand yðtÞ (Singh and

Hespanha, 2010). Assuming f<< 1, the coefficient of variation squared ðCV2Þ of the ratio xðtÞ/(xðtÞ + yðtÞ) is given by Equation (1):

CV2 3f = 2TONe

�
T� 2T

TON

�
�2�TON

ð2eT�1ÞðTON�2Þ , where T = tkx is the duration of the experiment (normalized to the generation time), and TON =

kx=kOFF is the time spent in the ON state (normalized to the generation time). This equation quantifies the noise measured in Mem-

orySeq, and as expected, CV2 is a monotonically increasing function ofTON; i.e., slower switching results in higher variation across

MemorySeq clones. It turns out that the productCV23f is independent of f, and it is convenient to look at this product as a function of

TON. Given a priori knowledge of f and a measurement of the noise level CV2, TON can be estimated via an inverse transformation of

Equation (1). In our experiments, f was typically around 1% or less, as measured using RNA FISH, and each MemorySeq clone

started as a single cell and grew to around 105 cells, for which the number of doublings T = 17. Using these values, we estimated

TON of 5-10 cell divisions for several MemorySeq genes based on the observed CV values across MemorySeq clones. Further dis-

cussion of this model can be found at https://www.dropbox.com/s/n34mz3ctk1w5xu8/SupplementalNote1.pdf?dl=0.

STATISTICAL ANALYSIS

For each experiment, the sample sizes, number of replicates, and randomization procedure (when relevant) are indicated in the main

text and figure legends. Statistical tests for calculating P values and thresholds for judging significance are indicated in the figure

legends.
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Supplemental Figures

Figure S1. MemorySeq Identifies Heritable Genes across Multiple Cell Lines, Related to Figure 1

A. Histograms showing the overall distribution of the residuals for MemorySeq clones and Noise controls inWM989-A6 cells. B. Robustness analysis showing the

fraction of MemorySeq genes discovered by resampling the clones with replacement over 100 iterations. The plot shows the histogram of the fraction of genes

overlapping with the core set of 227 through each iteration. C. Same plot as Figure 1D, except the genes labeled in pink are the set selected for RNA FISH in

Figure 3. D. Cook’s distance plots for 4 gene pairs showing the strongest correlations in the MemorySeq data. Each plot depicts the residuals versus leverage for

the regression with the gene pair. Red dotted lines delineate the cut-offs for Cook’s distance > 0.5 and > 1. E. Correlation heatmap for all pairs of heritable genes in

MDA-MB-231-D4 MemorySeq. F. Plot of heritability index from MemorySeq versus Gini coefficient from RNA FISH for MDA-MB-231-D4 (replicate RNA FISH

data available onDropbox). G. Plot of coefficient of variation versus the log2mean expression for MemorySeq on PC-9 cells. H. Correlation heatmap for all pairs of

heritable genes in PC-9 MemorySeq. I. Correlation heatmap for all pairs of heritable genes in WM983B-E9 MemorySeq. (J). Plot of heritability index from

MemorySeq versus Gini coefficient from RNA FISH for WM983B-E9 (replicate RNA FISH data available on Dropbox). K. Plot of coefficient of variation versus the

log2 mean expression for WM983B-E9 cells with Noise controls on left and MemorySeq clones on right. L. List of genes found to be heritable in MemorySeq

across WM989-A6, WM983B-E9, MDA-MB-231-D4, and PC-9 cell lines. M. We sorted CA9-stained cells into high- and low-expressing subpopulations (as

determined by antibody staining) as well as the unsorted mixed population and performed RNA FISH for SMAD6, CA9, CCNA2, and GAPDH. Boxplots show

counts per cell for each gene from each of the samples sorted based on CA9 protein labels. N. Replicate bar graph for data shown in Figure 4D.
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Figure S2. Time-Lapse Imaging Directly Shows that WM989 Cells Have Long-Lived Fluctuations in Expression of Genes Found with

MemorySeq, Related to Figure 2

A-C. RNA FISH and immunofluorescence of endogenous NGFR mRNA and protein in the NGFR-mNeonGreen2 (NGFR-mNG2) tagged WM989-A6-G3 cell line

showing that mNG2 fluorescence correlates with NGFR expression and protein localization. D. We sorted cells based on mNG2 fluorescence from the indicated

gates, treated cell populations with vemurafenib for 3 weeks, then imaged the wells to quantify resistant colonies. Stitched whole well images from 3 additional

replicates are available on Dropbox. E. We performed time-lapse imaging of WM989-A6-G3 cells tagged with NGFR-mNG2 and tracked cells to quantify the

length of time that cells remain in the NGFR-high state. Cartoon shows two possible outcomes from cells that become NGFR-high. F. Histograms of the length of

time that individual cells remain in the NGFR-high state using three different thresholds for determining when a cell is NGFR-high. The blue (both dark and light

(legend continued on next page)
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blue) show the raw data for the on time, while the gray shows the on times that result from using amoving average of the time trace using a 5 point median filter. At

a threshold of 1500, the average on time is 40 hours for scenario 1 (light blue) and 52 hours for scenario 2 (dark blue). G. Plots of mNG2 fluorescence intensity over

time for three example cells that enter the NGFR-high state and remain high for 4.25 to 5.25 days, thereby demonstrating memory. H-I. Comparison of nuclear

segmentation versus whole segmentation for quantifying mNG2 fluorescence. Images are subfield views taken from scans comprising several image tiles;

boundaries in the image arise from edges between individual tiles. J-K. Tiled brightfield and immunofluorescence image scans of WM989-A6-G3 after tracking by

timelapse for 8.67 days. Histograms show the immunofluorescence signal intensity in 159 cells (top; AXL IF) and 155 cells (bottom; EGFR IF) after timelapse.

Descendents of the AXL-high or EGFR-high cells in Figure 2D are labeled with red points in the images and their immunofluorescence levels are indicated by red

arrows in the histogram. L. Time-lapse imaging of theWM989-A6-G3NGFR-mNG2 cell line treatedwith 500nM vemurafenib. Plot of fluorescence intensity versus

time for four lineages tracked through the experiment. Black dots label cell division, red dots label cell death, and the green dots label when a cell disappears from

the field of view. Related to Videos S2 and S3.
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Figure S3. Expression of MemorySeq Genes Is Maintained over Multiple Cell Divisions but Ultimately Reversible, Related to Figure 4

A-C. We sorted AXL-high and EGFR-high WM989-A6-G3 cells into multiple 2-well plates then fixed the separate plates at multiple time points up to 9 days after

sorting. We then performed RNA FISH to measure single-cell expression of AXL and EGFR. Boxplots show the single-cell expression of AXL and EGFR in the

indicated sorted populations. D-E. Representative RNA FISH images showing clusters of cells expressing high levels of EGFR or AXL. Arrowheads mark

transcription sites identified by colocalization of exon-targeting and intron-targeting RNA FISH probes. The presence of multiple transcription sites in these cells

suggested that the observed gene expression memory is due to persistence of active transcription rather than slower cell division or RNA degradation rates. F-G.

We sorted equal numbers of NGFR-high and NGFR-low W989-A6-G3 cells from the indicated gates then cultured the cells for 7 days before re-labeling with an

antibody targeting NGFR andmeasuring immunofluorescence intensity by flow cytometry. At day 7, the distribution of immunofluorescence intensities is higher in

the NGFR-high samples relative to the NGFR-low samples, although the distributions are closer than at day 0 (2 of 2 replicates shown). H-I. Two additional

(legend continued on next page)

ll
Article



biological replicates of the data presented in Figure 4C. J. We monitored cell division in the CA9-sorted MDA-MB-231-D4 by staining cells with CellTrace Violet

(CTV) immediately after sorting, thenmeasuring CTV fluorescence by flow after 5 days in culture. For reference, we freshly stained equal numbers of cells on day 5

to flow in parallel. As shown, both CA9-high and CA9-low sorted samples showed lower CTV fluorescence than freshly stained cells consistent with multiple cell

divisions (also noted by seeing clusters of cells in culture). We note that the CA9-high sample retained slightly more of the CTV dye than the CA9-low sample,

which may reflect small differences in cell division, cell size or protein turnover.
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Figure S4. RNA FISH Reveals Spatial Patterns of Gene Expression Memory, Related to Figure 3

A. We measured expression of MYC in WM989-A6 cells grown on culture dishes for 10 days. Spatial position of each cell in culture with the top 2% of MYC

expressing cells in red and the rest of cells labeled in gray. B. Histogram of MYC mRNA levels across individual cells, showing the large amount of variability in

MYC expression. The rightmost line (light blue) marks the top 1% of cells, the left line (dark blue) marks the top 2%. C. Related to Figure 3C.We analyzed different

cutoffs for cells to be considered to be in the high-expression-level state (either the top 1 percent of cells or the top 2 percent of cells). We also increased the bin

size for each neighborhood for analysis, which is quantified as the number of neighboring cells included in each bin. We quantified the skewness across

MemorySeq clones versus the spatial clusteringmetric, which is the Fano factor (variance/mean) in the number of positive cells per bin across all bins of indicated

size. D. Spatial maps and histograms for RNA FISH experiments in Figure 3A. Data is shown for 4 example genes (equivalent plots for all measured genes are

available on Dropbox). E. Using RNA FISH in WM989-A6-G3, we find that DDX58 and PMAIP1 expression is correlated in single cells, but both genes are far less

correlatedwith the expression ofAXL,EGFR orWNT5A. Shown are representative images (maximumZ-projection) of a group of cells co-expressing high levels of

(legend continued on next page)
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DDX58 and PMAIP1. F. We observe spatial clustering of cells expressing DDX58 and PMAIP1 as calculated by Fano factor. Error bars correspond to the 95%

confidence interval of the randomly permuted dataset. Spatial maps as in D are available on Dropbox. G. Scatterplots demonstrating correlation between

PMAIP1 and DDX58 expression, as well as minimal correlation between PMAIP1 and AXL expression. Additional pairwise comparisons including EGFR and

WNT5A are available on Dropbox. H. Heatmap of the measured Pearson correlation values from RNA FISH across 362 cells. I. Heatmap shows the differential

expression of MemorySeq genes (rows) in untreated WM989-A6 cells versus cells treated with vemurafenib. Color indicates the log2 fold change in reads per

million (rpm + 0.1) versus the mean reads per million across all conditions. J. Venn diagram shows the overlap between heritable genes identified in WM989-A6

using MemorySeq and differentially expressed genes in vemurafenib-resistant versus drug-naive WM989-A6 cells. Replicate data for A-D are available on

Dropbox.
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Figure S5. MemorySeqGene Fluctuations Are Associatedwith Lower Levels of Activating ChromatinMarks and Simultaneous Transcription

from Multiple Alleles, and Can Be Regulated by FOS/JUN, NFAC, and SOX10 Transcription Factors, Related to Figure 5

A-B. H3K27 acetylation (H3K27Ac) and tri-methylation (H3K27me3) ChIP sequencing coverage surrounding the transcription start site (TSS ± 2,000 bp) for

WM989-A6 MemorySeq genes and expression matched control genes. Data for SKMEL5 cell line. C. Average H3K27Ac and H3K27me3 ChIP sequencing

coverage surrounding the TSS for WM989-A6 MemorySeq genes and 100 expression-matched control gene sets in 11 different melanoma cultures. D. Average

ChIP sequencing coverage surrounding the TSS of MDA-MB-231-D4 MemorySeq genes and 100 expression-matched control gene sets for 5 histone marks

assayed in MDA-MB-231. Similar plots for 6 additional marks available on Dropbox. E. Comparison of WM989-A6 ATAC sequencing peaks across MemorySeq

genes (+/� 10,000 bp) to peaks across 100 separate expression-matched gene sets identified 148 transcription factors enriched in at least one comparison

(legend continued on next page)
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(adjusted p value% 0.025). Plot shows the number of comparisons enriched for each motif. Motifs with corresponding transcription factor knockout data in F are

colored red. F. Log2 fold change in gene expression of MemorySeq genes (blue), a randomly sampled, control gene set (purple), and all genes included in the

MemorySeq analysis (gray; mean RPMR 1 acrossMemorySeq clones) in the indicatedWM989-A6-G3CRISPR/Cas9-knockoutsmeasured by RNA sequencing.

G. Model for MemorySeq gene expression fluctuations driven by transcription from a single allele versus multiples alleles. H. We identified heterozygous variants

in 202 MemorySeq genes for allele-specific expression analysis (54 in WM989-A6, 79 in WM983B-E9 and 69 in MDA-MB-231-D4). Plotted are the normalized,

allele-specific read counts across MemorySeq clones for the 6 MemorySeq genes in each cell line with the highest RNA sequencing coverage of heterozygous

variants. Comparison of allelic expression showed that the highest expressing MemorySeq clones (red; based on total expression from corresponding genes)

tended to have higher expression from both alleles relative to the majority of other clones, consistent with regulation by a trans-acting factor. Equivalent plots for

all MemorySeq genes with heterozygous variants are available on Dropbox. I. Single-cell model for MemorySeq gene expression fluctuations driven by tran-

scription from a single allele versus multiples alleles. J-K. Images of RNA FISH for AXL and EGFR using both intron and exon probes labeled with distinguishable

fluorescent dyes. Co-localization of FISH signals demonstrates multiple transcription sites in single cells. These cells are the same as AXL-high and EGFR-high

sorted WM989-A6-G3 cells presented in Figure S3.
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