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Therapies that target signalling molecules that are mutated in 
cancers can often have substantial short-term effects, but the 
emergence of resistant cancer cells is a major barrier to full cures1,2. 
Resistance can result from secondary mutations3,4, but in other 
cases there is no clear genetic cause, raising the possibility of non-
genetic rare cell variability5–11. Here we show that human melanoma 
cells can display profound transcriptional variability at the single-
cell level that predicts which cells will ultimately resist drug 
treatment. This variability involves infrequent, semi-coordinated 
transcription of a number of resistance markers at high levels in a 
very small percentage of cells. The addition of drug then induces 
epigenetic reprogramming in these cells, converting the transient 
transcriptional state to a stably resistant state. This reprogramming 
begins with a loss of SOX10-mediated differentiation followed by 
activation of new signalling pathways, partially mediated by the 
activity of the transcription factors JUN and/or AP-1 and TEAD. 
Our work reveals the multistage nature of the acquisition of drug 
resistance and provides a framework for understanding resistance 
dynamics in single cells. We find that other cell types also exhibit 
sporadic expression of many of these same marker genes, suggesting 
the existence of a general program in which expression is displayed 
in rare subpopulations of cells.

Melanoma, which often results from V600E mutations to the BRAF 
protein, is a paradigmatic example of resistance to cancer therapy. The 
drug vemurafenib, which inhibits the mutated BRAF protein, nearly 
eradicates tumours, but a small subset of cancer cells develop drug 
resistance1–3.

To understand resistance at the single-cell level, we turned to  cultured 
patient-derived melanoma cells. Cells isolated from two patients 
(WM989, WM983B) grown under normal conditions proliferated 
readily. A fractional killing dose of vemurafenib (1 μ M, Extended Data 
Fig. 1a–d) stopped the growth of most cells, but sporadic  proliferative 
colonies of resistant cells formed (these surviving cells’ transcriptomes 
resembled that of drug-resistant cells in patients; Extended Data  
Fig. 2d). Long-term time-lapse imaging capturing the onset of  resistance 
revealed that drug-resistant colonies can arise from single cells pro-
liferating normally before drug addition (Supplementary Video 1;  
Extended Data Fig. 1f), showing that these cells are not in a dormant 
 ‘persister’ state.

We considered two models for resistance in single cells: a genetic 
‘mutation’ model and a transient, non-heritable model (Fig. 1a). In the 
strongly heritable mutation model, a cell in the resistant state cannot 
revert. In the transient model, cells transition between pre-resistant 
and non-resistant states, with pre-resistant cells defined as those that 
give rise to resistant colonies upon addition of drug (Fig. 1a). We tested 
these hypotheses using Luria and Delbrück’s ‘fluctuation analysis’12. 

First, we isolated a single cell from the parental cell line to minimize any 
existing genetic heterogeneity. We expanded this cell for 7–8 divisions, 
derived several single-cell cultures (approximately 1 million cells), 
then added drug and counted resistant colonies (Fig. 1a). If resistance 
were heritable, then occasional early transitions to resistance would 
 propagate during expansion, leading to large numbers of resistant 
 colonies. If, however, the pre-resistant state is transient, then all cells 
in any culture are equally likely to form a resistant colony, making large 
numbers of resistant colonies unlikely.

The lack of outliers in the distributions of number of resistant 
colonies was incompatible with a heritable pre-resistant  phenotype. 
Simulations confirmed statistical significance with P values of 0.0005 
and 0.0012 in WM989-A6 cells (Fig. 1b; replicates with 43 and  
29  cultures) and 0.0395 for WM983B-E9 cells (WM983B-E9 data 
and analysis in Extended Data Fig. 3). Targeted DNA sequencing of 
119 cancer- related genes revealed no new mutations in two resistant 
 subclones (Extended Data Fig. 1e).

We then wondered whether single-cell gene expression differences 
marked pre-resistant cells. We first identified the transcriptional 
program associated with stable drug resistance in WM989-A6 and 
WM983B-E9 cells (clonal isolates of WM989 and WM983B, respec-
tively) and stably resistant subclones (Fig. 1d and Extended Data Fig. 2a)  
via population-based RNA-sequencing, revealing marker genes (1,456 
and 1,316 genes, respectively) whose expression increased in resistant 
cells but not upon drug administration (Extended Data Fig. 2b). We 
recovered well-known markers of drug resistance, including WNT5A13, 
AXL14, EGFR15, PDGFRB3, and JUN16.

The low average marker expression in untreated cells may mask 
rare individual cells with high expression. We used high-throughput 
 single-molecule RNA FISH30 to count mRNA of selected resistance 
genes in thousands of cells before drug treatment. We found a population 
of rare cells (frequencies of 1:50 to 1:500) expressing resistance genes at 
high levels before drug exposure (Fig. 1c and Extended Data Fig. 4a, c;  
outliers remained after GAPDH normalization17). After 4 weeks of 
treatment with vemurafenib, resistant colonies expressed these  markers 
at more uniformly high levels (Fig. 1e).

To see if sporadic marker gene expression marked cells that ulti-
mately become resistant, we stained live WM989-A6 melanoma cells 
with antibodies targeting one of the sporadic markers (EGFR) and 
performed fluorescence-activated cell sorting (FACS), isolating the 
top 0.02–0.2% EGFR-stained cells. We then applied vemurafenib for  
3 weeks (Fig. 1f), finding that EGFR-high cells produced 7.9 ±  0.92-fold  
(the indicated error is standard deviation) more resistant colonies  
(on average 2.4-fold larger) than EGFR-mixed cells (Fig. 1f and 
Extended Data Fig. 5a). RNA FISH confirmed higher resistance  
gene expression in EGFR-high cells13–15 (Extended Data Fig. 5b–d). 
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Thus, rare cells with high levels of EGFR within the untreated popula-
tion are far more likely to become resistant once drug is applied.

We confirmed the transient model by allowing EGFR-high subpopu-
lations to grow in culture without drug to see if resistance reverted. 
The ratio of colonies in the EGFR-high to the EGFR-mixed population 
dropped from 13.4 ±  10.6 to 1.17 ±  0.47 after 1 week of growth before 
drug treatment, demonstrating that pre-resistance is not heritable 
on this timescale (Fig. 1g). Incomplete reversion at the longest time 
point in culture was possibly due to differences in paracrine signalling 
between cultures.

We wondered how widespread sporadic expression was. We per-
formed RNA FISH for a panel of 19 genes on up to 40,000 single 
cells, including resistance markers, housekeeping genes, and master  
melanocyte regulators by developing a method for iterative RNA FISH 
using multiple cycles of hybridization18 (Fig. 2a and Extended Data  
Fig. 6a). We quantified sporadic, ‘jackpot’ type heterogeneity seen for 
AXL, EGFR and NGFR with the Gini coefficient19: 0 means all cells 
have the same number of mRNA molecules, whereas 1 means one cell 

expresses all the mRNA molecules while others express none (Fig. 2b). 
Of 23 genes (19 genes in our panel plus 4 additional control genes) 
in WM989-A6 cells, 13 genes had Gini coefficients greater than 0.5, 
indicating a large degree of inequality. Housekeeping genes had Gini 
coefficients below 0.5, and the cell cycle marker CCNA2 and slow- 
cycling marker KDM5B20 had Gini coefficients slightly above 0.5  
(Fig. 2b and Extended Data Fig. 7).

This phenomenon extended to three other melanoma cell lines, 
primary melanocytes, and four other cancer types (Fig. 2b). Each cell 
line had genes with very high Gini coefficients, showing that sporadic 
expression is neither unique to cancer nor melanoma. Furthermore, 
rare-cell expression manifested in patient-derived xenografts (LOXL2, 
CYR61, NGFR, AXL, NRG1; Extended Data Fig. 8), and patient  
single-cell RNA-sequencing data21 (Extended Data Fig. 7a, b).

Sorting for NGFR or AXL also enriched for pre-resistant cells in 
WM989-A6 (Extended Data Fig. 9). NGFR sorting enriched for 
pre-resistance in two of three melanoma lines tested (WM989-A6, 
SK-MEL-28; not WM983B-E9).
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Figure 1 | Resistance to vemurafenib is not heritable, and pre-existing 
pre-resistant cells are marked by very high expression of resistance 
genes. a, Alternative models for heritability of the resistant phenotype and 
simulated outcomes of each model. b, Distributions of resistant colonies in 
WM989-A6 (n =  2 biological replicates of 43 and 29 clones; WM983B-E9 
in Extended Data Fig. 3). c, Computational representation of single-cell 
RNA FISH (8,672 untreated cells) for AXL, NGFR, and EGFR mRNA; each 
dot is a cell coloured by number of mRNA (1 of n =  2 biological replicates). 
d, Transcriptome analysis before drug, 48 h after drug and stably resistant 
cultures (see Extended Data Fig. 2). Heat map depicts ‘marker genes’ 

whose expression increased in resistant cells relative to untreated. 
e, Single-cell AXL RNA FISH (1,966 cells) after 4 weeks treatment with 
1 μ M vemurafenib (1 of n =  2 biological replicates). f, FACS of cells with 
an EGFR antibody; isolated an EGFR-high and mixed cell population, 
then applied vemurafenib. Two-well chamber of populations after 3 weeks 
vemurafenib (1 of n =  3 biological replicates, Extended Data Fig. 5a).  
g, Ratio of number of colonies in EGFR-high versus mixed wells after cells 
grew without drug for varying periods before vemurafenib application. 
Error bars represent standard error of the mean (3 biological replicates).
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Since many resistance markers individually showed rare expression 
patterns, we wondered if sporadic expression events were coordinated 
between genes. Quantifying pairwise relationships in high- and low- 
expression states, yielded odds ratios between resistance genes ranging 
from 4 to 142, indicating high degrees of co-expression (Fig. 3a, b). We 
found two groups of genes: housekeeping and melanocyte differenti-
ation factors and resistance marker genes (Fig. 3b and Extended Data 
Fig. 4d), confirmed by principal components analysis (Extended Data 
Fig. 6b, c).

We hypothesized that cells expressing multiple resistance markers 
were even more likely to be pre-resistant. We stained live WM989-A6 
cells with both NGFR and EGFR antibodies and isolated four cell  
populations: double negative, EGFR-positive only, NGFR-positive only, 
and EGFR- and NGFR-positive (validated by RNA FISH; Extended 
Data Fig. 5e). We then applied vemurafenib for 2 weeks. While both 
EGFR only and NGFR only cells formed more resistant colonies than  
negative cells (11 and 12 versus 2), double-positive cells formed the 
highest number of resistant colonies (36) (Fig. 3c).

We also found higher-order correlations for these markers. Many cells 
expressed high levels of multiple markers, with 13 of 8,672 expressing  
6 markers simultaneously and 2 expressing 8 (Fig. 3d). The frequency 
of multi-expressing cells approached that of resistance itself (Extended 
Data Fig. 6d). The correlation structure revealed a potential network 
structure (Extended Data Fig. 7d, e).

These results show that sporadic cells occupy a transient state 
 characterized by high levels of resistance marker transcription. 
Yet, once fully resistant, drug ‘holidays’ did not affect either the 

 transcriptome (Extended Data Fig. 2b) or the resistant phenotype 
(Extended Data Fig. 5f), showing that the resistant phenotype is stable.  
We  therefore hypothesized that resistance occurs in two phases:  
first, rare cells become transiently pre-resistant, then adding drug  
initiates  cellular reprogramming, ‘burning in’ the stable resistant 
phenotype.

To determine whether adding drug led to reprogramming of pre- 
resistant cells, we isolated pre-resistant cells (by sorting for high EGFR 
levels) before adding drug as well as 1 week and 4 weeks after adding 
drug (Fig. 4a and Extended Data Fig. 10a). We found that pre-resistant 
cells express only a very small fraction (72 of 1,456) of resistance markers  
(Fig. 1c) at near the level of activation in resistance (Fig. 4a). After 
adding drug, however, the percentage of resistance genes expressed 
increased; by 1 week in drug, 600 of 1,456 total resistance genes were 
activated to > 80%, increasing to 966 at week 4, demonstrating a pro-
gressive transformation of the transcriptome as cells became stably 
resistant (Gene Ontology analysis in Supplementary Data 1).

An important caveat is that selection processes can create apparent 
changes in expression patterns of EGFR-high cells. We confirmed 
reprogramming by analysing APCDD1, a marker of resistance but not 
pre-resistance (Extended Data Fig. 6e). APCDD1 was not expressed in 
any cell in the untreated population, but had high expression in stably 
resistant cells, demonstrating that the expression profile of the pre- 
resistant cells changed upon becoming stably resistant. Furthermore, 
for many resistance marker genes (EGFR, PDGFRB and NRG1), the 
rare highly expressing cells had less expression than resistant cells, 
 indicating transcriptional reprogramming (Extended Data Fig. 4b). 
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Figure 2 | Multiplex single-cell RNA FISH reveals rare cells with high, 
sporadic expression of resistance markers across multiple cell lines.  
a, High-throughput imaging and reiterative hybridization scheme. b, Gini 

coefficients of single-cell RNA FISH data for four melanoma cell lines, 
primary melanocytes, and four other cancer cell lines (1 of n =  2 biological 
replicates shown).
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Coupled with the phenotypic changes upon becoming stably resistant 
(compare Fig. 1g with Extended Data Figure 5f), these results demon-
strate that these cells reprogram to achieve stable resistance, irrespective 
of potential selection effects.

To determine what gene regulatory changes underpinned this 
reprogramming, we used a genome-wide assay for transposase-ac-
cessible chromatin (ATAC-seq)22 to identify putative transcription 
factor  binding sites (Fig. 4b and Extended Data Fig. 10a). Comparing 
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non- resistant and pre-resistant cells revealed only 33 total differentially 
accessible sites, consistent with the hypothesis that the transient, pre-
drug, pre-resistant state is a shallow deviation from the non-resistant 
state.

However, ATAC-seq revealed large changes in the pattern of tran-
scription factor occupancy after adding drug. We categorized these 
changes into gains and losses of accessible sites, corresponding to 
changes in transcription factor occupancy. Between untreated cells and 
those in drug for 4 weeks, the cells lost 1,787 and gained 9,143 accessible  
sites (Fig. 4b), demonstrating broad cellular reprogramming. The 
predominant change during the first week was loss of accessible sites, 
 followed by a gain of new sites from 1 to 4 weeks (Gene Ontology 
 analysis in Supplementary Data 2). Much of the initial peak loss 
resulted from loss of SOX10 binding, whereas the subsequent gain of 
peaks resulted from activation of TEAD and AP-1 and other  signalling 
pathways (Fig. 4c). SOX10 regulates neural crest  development in 
 melanocytes, and TEADs regulate invasion in melanoma23,  suggesting 
that the post-drug transition to stable resistance consists of dedifferen-
tiation followed by activation of new signalling pathways. Confirming 
this, we found that EGFR15,23 inhibition during reprogramming 
affected resistance, while inhibition during pre-resistance did not 
(Extended Data Fig. 9).

Here, we document a rare, transient state that leads to drug 
 resistance. Our findings are conceptually similar to those of Sharma 
et al.6, and may extend beyond melanoma; many of these genes show 
rare-cell expression in unrelated cancer cell types10 (including primary, 
non-cancerous melanocytes), suggesting the existence of a rare-cell 
expression program co-opted in resistance and potentially phenotype 
switching24. Further elucidation of both plasticity and reprogram-
ming may open new avenues for therapeutic targeting, including lipid 
 peroxidase pathways25.

Also, transient and genetic1 causes of resistance are not mutually 
exclusive9,26. Transient effects may provide initial resistance, allowing 
a small subpopulation of tumour cells to survive until some acquire 
secondary mutations that drive the progression to relapse. In that case, 
brief application of drug may prevent the completion of the burn-in 
reprogramming process, leaving cells free to revert to a drug-sensitive 
state27. Our findings may inform such interval dosing strategies28,29.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
No statistical methods were used to predetermine sample size. The experiments 
were not randomized and the investigators were not blinded to allocation during 
experiments and outcome assessment.
Cell culture, drugs, and fixation. We grew melanoma cell lines (WM989-A6, 
WM983B-E9, and 1205Lu, SK-MEL-28) from the laboratory of M.H. validated 
in the laboratory of M.H. by short tandem repeat profiling using AmpFlSTR 
Identifiler PCR Amplification Kit (Life Technologies), in Tu2% media contain-
ing 78% MCDB, 20% Leibovitz’s L-15 media, 2% FBS, and 1.68 mM CaCl2 and 
primary melanocytes isolated from human neonatal foreskin (Fom217-1 from 
the laboratory of M.H.) in Medium 254CF (Life Technologies, M254500) sup-
plemented with Human Melanocyte Growth Supplement (Life Technologies, 
S0025). WM989-A6 and WM983B-E9 are specific single-cell-derived subclones 
of WM989 and WM983B, respectively, that we used for all experiments to mini-
mize genetic heterogeneity, and were chosen because their resistance properties 
are similar to the parental WM989 and WM983B cell lines. We also grew HeLa 
cells and MDA-MB-231 cells in DMEM supplemented with 10% FBS, PC-9 cells 
in RPMI supplemented with 10% FBS, and SH-SY5Y cells in DMEM/F12 with 
10% FBS. All cell lines tested negative for mycoplasma. We made stocks of 4 mM 
vemurafenib (Selleckchem, S1267) and 4 mM lapatinib (Santa Cruz Biotechnology, 
202205B) in DMSO, and diluted in media to a final concentration of 1 μ M in all 
drug-treatment experiments. For all RNA FISH experiments, we grew cells on 
two-well Laboratory-Tek chambered coverglasses. We fixed and permeabilized 
cells for RNA FISH according to ref. 30.
Time-lapse imaging. We imaged the cells on a Nikon Ti-E enclosed in plexiglass 
incubation chamber heated to 37 °C with 5% CO2. We seeded WM989-A6 cells 
into a two-well Laboratory-Tek chambered coverglass and took bright-field images 
every 2 h for 28 days. At each time point, we acquired a total of 702 images over a 
39 ×  18 grid of images at 10×  magnification to capture the entire culture dish. We 
stitched each of the tiles into one composite image for each time point and then 
compiled movies from the images using MATLAB.
Luria–Delbrück fluctuation analysis. To minimize pre-existing genetic hetero-
geneity in the cell line, we isolated single-cell clones from WM989-A6 and 
WM983B-E9 melanoma cell lines. We expanded these clones up to 100–200 cells 
total and then isolated single cells to derive the subclones for the Luria–Delbrück 
fluctuation analysis. We then allowed the subclones to grow in culture through 
around 20 doublings for WM989-A6 and about 22 doublings for WM983B-E9 to 
give approximately 1 million cells and 4 million cells, respectively. After  expansion, 
we trypsinized each subclone, counted the number of cells in the culture using a 
haemocytometer, and then seeded 600,000 cells into two 12-well plates (yielding 
25,000 cells per well). We had a total of 43 and 29 subclones with the WM989-A6 
cell line (biological replicates) and 20 subclones for WM983B-E9. One day after 
seeding into 12-well plates, we applied 1 μ M vemurafenib. Throughout the 
 experiment, we changed the media and drug and counted the number of resistant  
colonies twice per week. We ended the experiment when the plates stopped 
 developing new resistant colonies or when all the resistant colonies appeared 
to be daughter colonies from larger ones. Note that upon re-plating the cultures 
before administration of drug, we observed varying degrees of growth and plating 
efficiency, all of which served to increase the variance, as we found that cultures 
with larger numbers of cells following replating had generally higher numbers 
of resistant cells. Thus, by not taking this into account, our observed variance is 
likely higher than the actual variance, biasing against the transient pre-resistance 
hypothesis.

To show that our resulting counts of resistant colonies were probably not the 
result of a strongly heritable transition to a pre-resistant state, we simulated the 
strongly heritable Luria–Delbrück process (code available at https://www.dropbox.
com/sh/g9c84n2torx7nuk/AABZei_vVpcfTUNL7buAp8z-a?dl= 0). In brief, the 
parameters are the initial culture size (set to one in our case), the ultimate sizes of 
the cultures (we used the largest multiple of two lower than the actual measured 
culture sizes, thus biasing against ourselves), and the mutation rate, which we 
varied as part of our simulations. For each mutation rate, we ran the simulations 
10,000 times, and noted both the Fano factor (variance divided by the mean) and 
coefficient of variation across the simulated cultures for each iteration. We then 
computed a P value for each mutation rate by determining how often the simulated 
Fano factor or coefficient of variation (separate P values for each statistic) exceeded 
our actual measurements (Extended Data Fig. 3). The P value we report is based on 
the most conservative estimate based on both the statistics we computed.
Iterative RNA FISH. We designed oligonucleotide probe sets using the Stellaris 
probe designer (Biosearch Technologies) and ordered them with an amine group 
on the 3′  end (sequences available in Supplementary Data 3). We pooled the  
oligonucleotides for each probe set and coupled them to either Cy3 (GE 
Healthcare), Alexa594 (Life Technologies), Atto647N or Atto700 (Atto-Tec). 

We performed RNA FISH as previously described30 for each of the cycles of 
 hybridization. We first fixed cells with formaldehyde and permeabilized with 
70% ethanol. We next washed once with wash buffer (containing 10% formamide 
and 2×  SSC) and then applied hybridization buffer (containing 10% formamide, 
10% dextran sulphate, and 2×  SSC) with the specified pool of RNA FISH probes.  
We hybridized for 6–12 h and then washed 2 times for 30 min with wash buffer.

After imaging, we applied 60% formamide with 2×  SSC for 15 min on a heat 
plate kept at 37 °C. We then washed the sample 3 times with 1×  PBS for 15 min 
also at 37 °C to remove residual formamide, which we have found can inhibit 
 further hybridizations. Lastly, we washed once with wash buffer to remove residual  
1×  PBS and prepare the samples for another RNA FISH hybridization.
RNA FISH on patient-derived xenografts. We fixed tissue sections by treating 
with 4% formaldehyde in PBS for 10 min and then permeabilized and stored them 
in 70% ethanol at 4 °C. We performed one cycle of RNA FISH as described above. 
We mounted the samples for imaging in 2×  SSC. We performed these experiments 
with two biological replicates from different mice and different tissue donors.
RNA FISH imaging. We imaged each sample on a Nikon Ti-E with a 60×  
 Plan-Apo objective and filter sets for DAPI, Cy3, Atto647N, Alexa594, and Atto700. 
We used Metamorph imaging software (Scan Slide application) to acquire a tiled 
grid of images (40 by 40 for the datasets shown in Fig. 2a) covering a 8.9 mm by 
8.9 mm area of the sample. We used the Nikon Perfect Focus System to ensure that 
the images remained in focus over the imaging area.
Image analysis. We developed a custom MATLAB pipeline for counting RNA 
FISH spots in tiled images. First, this software segments the nuclei of individual 
cells using the DAPI images. Next, the software identifies regional maxima in each 
tiled image as potential RNA FISH spots and assigns them to the nearest nucleus. 
Through a MATLAB GUI, the user selects a global threshold for each RNA FISH 
channel to identify the individual spots. We then visually inspected all cells that 
were above the jackpot threshold and used GUI editing tools to remove any auto-
fluorescent debris or artefacts from subsequent analysis. Lastly, we extracted the 
position of every cell in the scan and the number of RNA molecules for each 
fluorescent channel.

We also developed software to match cells across subsequent hybridizations, 
which poses a challenge because of slight warping in the tiled image in each 
 acquisition. Our algorithm attempts to match cells locally by shifting cells in the 
first hybridization to all potential candidates in the subsequent hybridization, 
choosing the best match as the one that minimizes total distance for nearby cells. 
We then smooth out this shift and apply it across the entire tiled image field. We 
then matched cells by proximity, discarding cells that did not match uniquely to a 
nearby cell in subsequent hybridizations; our yield was typically > 90% of cells in 
the initial hybridization matching in subsequent hybridizations.

We decided whether or not a cell was deemed a ‘high’ expressing cell for a 
 particular gene by determining whether the number of mRNA molecules in 
the cell exceeded a threshold. To avoid bias, our default was to set a threshold 
that  captured the top 2% of cells. If this percentage did not yield a reasonable 
 threshold, we  manually set a more appropriate threshold based on the distribution. 
Occasionally, autofluorescent debris in the images would be spuriously identi-
fied as cells, often with high numbers of false spots in them. Thus, we manually 
removed such regions, starting with cells with the highest number of identified 
RNA counts and continuing until we reached a relatively low level of mRNA below 
which  manually evaluating the data was no longer feasible. This procedure ensured 
that we  manually inspected all jackpot cells to verify their expression levels. For 
genes that did not exhibit sporadic expression patterns (including GAPDH, SOX10, 
CCNA2), we set thresholds by plotting the distribution and selecting a threshold 
that captures the tail. We performed all iterative RNA FISH experiments in dupli-
cate with biological replicates. We calculated Gini coefficients on the distributions 
of RNA FISH counts for each gene using the ineq package in R. The code for this 
image analysis pipeline and the data files including replicates (with a minimum 
of two independent biological replicates per dataset) are available at https://www.
dropbox.com/sh/g9c84n2torx7nuk/AABZei_vVpcfTUNL7buAp8z-a?dl= 0.
RNA sequencing and analysis. We sequenced messenger RNA from WM989-A6 
and WM983B-E9 melanoma cells. For WM989-A6, we sequenced the RNA from 8 
untreated samples, 8 samples treated with 1 μ M vemurafenib for 48 h, 10 resistant 
samples in 1 μ M vemurafenib, 4 resistant samples with drug removed for 48 h, 
and 4 resistant samples with drug removed for 1 week. For WM983B-E9, we 
sequenced RNA from 20 untreated samples, 20 samples treated with 1 μ M vemu-
rafenib for 48 h, 37 resistant samples in 1 μ M vemurafenib, 2 resistant samples 
with drug removed for 48 h, and 2 resistant samples with drug removed for 1 
week. Each sample is a biological replicate. We used the NEBNext Poly(A) mRNA 
Magnetic Isolation Module and NEBNext Ultra RNA Library Prep Kit for Illumina 
to extract polyadenylated RNA and prepare barcoded RNA sequencing libraries. 
We sequenced each sample at a depth of approximately 20 million reads on a 
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HiSeq 2000 (50 base pair length) or NextSeq (75 base pair length). We aligned 
our reads to hg19 using STAR and quantified reads per gene using HTseq (code 
available at https://bitbucket.org/arjunrajlaboratory/rajlabseqtools). We then used 
R to perform differential expression analysis with DESeq2 to identify resistance 
marker genes. We defined resistance marker genes using DESeq2 P value <  10−5 
and log2 fold change > 0.5.
Generation of patient-derived xenografts. We collected tumour biopsies from 
melanoma patients as previously described4. Fresh biopsies were processed under 
sterile conditions within 24 h. For processing, we used a cross blade technique 
to finely mince the tissue, then briefly digested the tissue in collagenase IV for 
20 min at 37 °C. The tumour tissue was then implanted s.c. with matrigel (Corning 
Life Sciences) into NSG mice (6–8 weeks, male or female). Tumour grafts were 
harvested at maximum tumour size and serially transplanted for expansion. Low-
passage PDX tumours were mounted in OCT immediately after the mouse was 
killed. For RNA FISH analysis, we sectioned the tumours into 7-μ m slices and then 
proceeded with RNA FISH as described above. All sample collection and animal 
experiments were approved by Wistar IRB and Wistar IACUC, respectively. We 
analysed samples from four different patients: the first of which (WM4335) had a 
BRAF(V600E) mutation and was sensitive to combination BRAF/MEK  inhibition, 
the second (WM4299) had a NRAS(Q61L) mutation and was not sensitive to 
MEK inhibition, the third (WM4266) had a unknown mutational status and the 
patient’s cancer progressed on immunotherapy, and the fourth (WM3909) had 
BRAF(V600E) mutation and a PIK3R1 mutation (the data from PDX experiments 
are in Fig. 2d and Extended Data Fig. 8).
EGFR and NGFR fluorescence assisted cell sorting. We stained WM989-A6 
 melanoma cells for fluorescence assisted cell sorting using an antibody against 
EGFR. First, we trypsinized the cells, washed once with 0.1% BSA in 1×  PBS, 
and incubated for 1 h at 4 °C with 1:200 mouse anti-EGFR antibody, clone 225 
(Millipore, MABF120) in 0.1% BSA PBS. Next, we washed with 0.1% BSA PBS 
and then  incubated for 30 min at 4 °C with 1:500 donkey anti-mouse IgG antibody 
labelled with Alexa Fluor 488 (Jackson Laboratories, 715-545-150). We washed the 
samples again with 0.1% BSA PBS and resuspended in 1% BSA PBS with 2 mM 
EDTA and DAPI for fluorescence assisted cell sorting. We used a MoFlo Astrios 
(Beckman Coulter) to collect the top 0.02–0.2% of cells stained for EGFR. We used 
the DAPI stain to exclude dead cells and used cells that were not incubated with 
the primary antibody as a negative control. To stain WM989-A6, WM983B-E9, 
and SK-MEL-28 cells for NGFR, we used anti-NGFR clone ME20.4 fluorescently 
labelled with PE/Cy7 (Biolegend, 345110). We incubated the cells with 5 μ l of anti-
body for 10 min at 4 °C. We then washed the samples and proceeded with sorting 
(as described above). For our negative control, we used a PE/Cy7 mouse IgG1 
(Biolegend, 400126). When sorting either EGFR-high or NGFR-high subpopula-
tions, we also collected a EGFR-mixed or NGFR-mixed population control by using 
the same gating for live cells, but without gating on the EGFR or NGFR stain. When 
staining for both EGFR and NGFR, we performed the EGFR staining first then 
stained with the NGFR antibody. When sorting for EGFR and NGFR together, we 
collected all four possible populations: cells negative for both stains, cells positive 
for EGFR only, cells positive for NGFR only, and cells positive for both EGFR  
and NGFR.
ATAC sequencing and analysis. We performed ATAC sequencing on WM989-A6 
melanoma cells according to ref. 22. In brief, we lysed the cells and set up the 
transposition reaction with the Tn5 Transposes (Illumina Catalog #FC121-1030) 
at 37 °C for 30 min. We cleaned the reaction with a Qiagen MinElute Kit and then 
amplified the libraries using the custom Nextera PCR primers described in ref. 22.  
We sequenced our libraries on a NextSeq with 75 base pair reads at a depth of 
approximately 40–70 million reads per sample. We aligned our reads to hg19 
with bowtie2 and then used the HOMER package for peak calling,  differential 
peak calling, motif analysis, and gene ontology analysis (code available at  
https://bitbucket.org/arjunrajlaboratory/rajlabseqtools). Peaks called as lost or 
gained if we could identify the peak in one of the conditions and saw a change in 
read count in the peak of fourfold or higher across both replicates.
MTS cell proliferation assay. The cell viability was estimated by using CellTiter 
96 Aqueous MTS Cell Proliferation Assay (MTS Cat# PR-G1111). In brief, 
WM989-A6 cells were seeded in 96-well plates with 2,000 cells per well. 24 h 

 incubation later, cells were cultured in the presence of vemurafenib at serial 
threefold dilution concentration. After 6 days of treatment, 20 μ l per well MTS 
 reagent were added and incubated for 4 h. Plates were read at 490 nm wavelength 
to  estimate cell proliferation.
Apoptosis assay. After treatment with vemurafenib at 1 μ M or 3 μ M for 3 days, 
WM989-A6 cells were harvested with trypsin-EDTA, centrifuged into a pellet 
including all floating cells, and rinsed with phosphate-buffered saline (PBS). Then, 
the cells were re-suspended in Annexin V binding buffer containing Annexin V 
APC (Biolegend cat. no. 640920) and propidium iodide (Sigma cat. no. P4864). 
The cells were incubated at room temperature for 15 min and were analysed using 
the FACSCalibur flow cytometry.
Western blot. WM989-A6 cells were cultured in 1 μ M or 3 μ M vemurafenib 
medium for 3 days. The cells were collected with or without floating cells and 
were lysed with TNE buffer with protease inhibitors. 30-μ g protein extracts were 
electrophoresed on 12% SDS–Page gels and transferred on the Nitrocellulose mem-
branes in Bio-rad Trans-Blot Turbo transfer system. The membranes were blocked 
with ODYSSEY Blocking Buffer (LI-COR #927-40000) for 1 h at room temperature 
and incubated at 4 °C overnight with the following primary antibodies: pMEK (Cell 
signal #9121s), pERK (Cell signal #4370s), pS6 (Cell signal #9121s), caspase-3 
(Cell signal #9662), PARP (Cell signal #9542s), β -actin (Sigma #A5441). After 
secondary antibody incubation, membranes were visualized by LI-COR Odyssey 
infrared imaging system.
Targeted DNA sequencing. We sequenced WM989-A6 (main WM989 sub-
clone), intermediate subclone A6-B1, and two resistant subclones, A6-B1-A2 and 
A6-B1-A3. We obtained resistant subclones by isolating cell clusters and  expanding 
in the  presence of drug. For each cell line, 500 ng of genomic DNA was sheared 
randomly into 200 bp fragments with the Covaris S200 UltraSonicator (Covaris). 
Sheared DNA was A-tailed and ligated with adaptor-embedded indexes using 
the NEBNext Ultra DNA Library Prep Kit for Illumina (New England BioLabs). 
DNA quality, fragment size, and concentration of library preps were measured 
using Agilent’s DNA 1000 chips in conjunction with the 2100 Bioanalyzer (Agilent 
Technologies). Samples were equimolarly pooled and sequenced with a 2.318 Mbp 
SureSelectXT Custom Target Enrichment Kit (Agilent Technologies) targeting 119 
genes (Extended Data Fig. 1). Paired-end sequencing (2 ×  125 bp) was  carried 
out on the HiSeq 2500 sequencing system (Illumina) at the next Generation 
Sequencing Core Facility. Mean target coverage of 346×  was achieved.

Short-sequenced reads were aligned to the GRCh37 human reference genome 
using the Burrows–Wheeler Aligner (BWA)31. Duplicate reads were removed, as 
well as reads that map to more than one location, off-target reads, and variants 
annotated with the incorrect transcript. Somatic SNVs/indels were detected using 
the MuTect32, Scalpel http://scalpel.sourceforge.net), VarDict (http://github.com/
AstraZeneca-NGS/VarDict), and Freebayes33 algorithms. Ensembl calling was done 
as in the bcbio-nextgen pipeline (http://github.com/chapmanb/bcbio- nextgen). 
Variants were annotated with ANNOVAR. Annotated variants with a read depth 
less than 20, as well as all synonymous variants, and/or variants present in the 
germline samples, were excluded. Furthermore, variants were removed if the minor 
allele frequency (MAF) was greater than or equal to 0.1% in the population data-
bases ExAC (http://exac.broadinstitute.org/) and/or 1000 Genomes34.
Data and code availability. RNA-sequencing data are deposited in GEO  
(accession GSE97682), and DNA sequences are available at SRA with accession 
number SRP103406. All RNA FISH data, including processed data and scripts, is 
available at https://www.dropbox.com/sh/g9c84n2torx7nuk/AABZei_vVpcfTUN 
L7buAp8z-a?dl= 0.
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Extended Data Figure 1 | Treatment of WM989 cells with vemurafenib 
induces cell death initially, but after weeks of treatment, colonies of 
resistant cells develop. a, Per cent viability of WM989-A6 cells treated 
with vemurafenib for 6 days (MTS assay). b, Annexin-V staining in 
WM989-A6 cells after 3 days of treatment with vemurafenib measured 
by flow cytometry. The percentage of cells that are positive for annexin-V 
is labelled on the plots. c, Western blot for pMEK, pERK, and pS6 after 
3 days of treatment with vemurafenib. d, Western blot for caspase-3 and 
PARP after 3 days treatment with vemurafenib. This demonstrates that 
WM989-A6 cells are highly responsive to BRAF inhibitor treatment with 
inhibition of signalling downstream of BRAF and apoptosis of sensitive 
cells. e, We performed targeted DNA-sequencing on a panel of 119 cancer 
and melanoma-related genes. We performed sequencing on the parental 
WM989-A6 subclone used throughout this work, along with the WM989-
A6-B1 subclone. From the WM989-A6-B1 subclone, we isolated two 

resistant subclones, WM989-A6-B1-A2 and WM989-A6-B1-A3. All of 
these cell lines had the same mutational profile. Thus, we can say that 
none of the clinically documented mutational profiles (such as in KRAS) 
appeared as genetic resistance mechanisms in our experiments. This does 
not in and of itself preclude, however, mutations to other genes or non-
coding mutations to regulatory regions. f, Twenty-eight-day time-lapse 
images of WM989-A6 cells before and then after application of cytostatic 
dose of vemurafenib. Sister cells are labelled in the images. There were 
approximately 18,000 cells at the time that we applied drug, and a total of 
9 resistant colonies formed on the culture dish. We observed instances in 
which two sister cells exhibited divergent phenotypes, for instance, one 
would respond to drug while the other would continue growing, eventually 
forming a resistant colony. These results suggest the possibility of a  
non-genetic resistance mechanism, although they do not constitute proof.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 2 | RNA-sequencing identifies genes whose 
expression is specific to resistance. a, Schematic of transcriptional 
profiling experiments. We harvested cells for analysis before drug, 48 h 
after drug application and then on stably resistant cultures. b, Heat maps 
depicting expression changes across all differentially expressed genes. 
Each row represents a separate RNA-sequencing experiment taken from 
a different Luria–Delbrück subclone. Resistant cultures obtained from 
subculturing resistant colonies. All genes shown have a greater than 
1.4-fold change and adjusted P value <  10−5 in at least one experimental 
condition. Colour represents log2 of fold change across the conditions. 
c, Fold changes in expression in drug response (blue; fold change of 48 h 
in drug versus no drug) and resistance (red; fold change of resistant cells 
versus no drug) for WM989-A6 cell line. Bolded gene names are the genes 
that were selected for analysis by RNA FISH in WM989-A6 cells  
(Fig. 2a). P values for differential expression of the drug response or 
resistance are indicated by asterisks next to each bar and cut-offs are 
labelled below the plots. d, RNA sequencing of patient tumours  

pre-treatment and post-treatment from Sun et al. (ref. 15) shows changes 
in gene expression for many of the same resistance marker genes found 
in WM989-A6 cells. Heat map depicts the log2 fold change for each gene. 
Samples are normalized by patient. The genes displayed here are the same 
panel of genes used for RNA FISH in WM989-A6 cells in Fig. 2a. This 
analysis demonstrates that there is overlap between the transcriptional 
signature of resistance in WM989-A6 cells and resistant patient samples. 
e, We wondered whether the set of pre-resistance associated markers was 
a privileged subset of the genes upregulated upon the cell becoming drug-
resistant. We performed our analysis on WM989-A6 cells, comparing 
untreated cells, cells treated with vemurafenib for 48 h, and resistant cells 
to identify marker genes that are upregulated uniquely during drug-
resistance (n =  1,456) and EGFR-high to EGFR-mix for pre-resistance 
markers (n =  212) (significance defined as log2 fold change of 0.5, 
P =  0.00001). We found that there was a strong overlap of 41 genes, but 
there were also clearly genes specific to both drug resistance and pre-
resistance, suggesting that they are not the same biological process per se.
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Extended Data Figure 3 | Luria–Delbrück fluctuation analysis 
demonstrates that WM989-A6 and WM983B-E9 cells develop drug 
resistance through a non-heritable mechanism. a, We simulated the 
strongly heritable hypothesis for a range of different mutation rates. 
At each mutation rate, we ran the simulation 10,000 times. We used 
the parameters specific to this experiment for the WM983B-E9 cell 
line, including the total number of divisions and subsampling of the 
cultures before drug treatment. Each column of plots assumes a different 
mutation rate which is labelled above. The first row contains histograms 
of the median number of colonies from each simulation, the second row 
contains histograms of the Fano factor from each simulation, and the third 
row contains histograms of the coefficient of variation (CV) from each 
simulation. In each plot, the value corresponding to our experimental 

findings are labelled by the vertical line. The P value to reject the strongly 
heritable hypothesis based upon the Fano factor or CV at each mutation 
rate is below the plot. b, Histogram of the number of resistant colonies 
from the Luria–Delbrück fluctuation analysis in WM983B-E9 with a total 
of 20 clones. c, d, We performed the Luria–Delbrück fluctuation analysis 
twice with the WM989-A6 cell line. As described for a, we simulated the 
strongly heritable hypothesis for a range of different mutation rates. The 
plots in panels c and d are from separate biological replicates with a total 
of 43 and 29 clones. The super-Poisson distribution we observed may 
potentially be due to variation in plating efficiency or proliferation rates 
between clones; the pre-resistant state may also be heritable over small 
numbers of divisions.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LETTER RESEARCH

Extended Data Figure 4 | See next page for caption.
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Extended Data Figure 4 | RNA FISH on thousands of melanoma cells 
reveals rare cells that express high levels of resistance marker genes. 
a, Histograms of transcript abundance for resistance marker genes (top) 
and non-resistance markers (bottom). The vertical lines represent the 
threshold for designating cells as either ‘high’ or ‘low’ expressing for a 
particular gene. The cells labelled by the red carpet below the histogram 
express high levels of a gene, and the cells labelled by the grey carpet 
express a gene at low levels. The dataset shown contains a total of 8,672 
cells and is one of two biological replicates. b, In an untreated population 
of cells, rare cells express resistance marker genes at much higher levels 
than the population average, sometimes at levels similar to the drug-
resistant state. Box plots showing the distribution of mRNA counts 
per cell for untreated WM989-A6 cells and resistant WM989-A6 cells. 
The untreated dataset is the same data as shown in a. For the resistant 
WM989-A6 cells, we performed iterative RNA FISH with the same 
panel of genes. The untreated dataset contains a total of 8,672 cells and 
the resistant data set contains a total of 4,082 cells (1 of n =  2 biological 
replicates are shown for each dataset). Asterisks next to the gene names 
indicates that the maximum expression of the untreated sample is greater 
than or equal to the median of the resistant sample, demonstrating that 
for these 7 of 9 genes, the ‘high’ cells have expression levels potentially 
equivalent to resistant cells. However, we also point out that given that the 
sampling of highly expressing cells in the untreated samples is low, it is 
difficult to explicitly compare the distributions to say that the expression 

in the rare highly expressing cells is equivalent to that in stably resistant 
cells. c, Rare cells expressing sporadic but high levels of resistance markers 
are still present when each gene is normalized by GAPDH mRNA counts. 
Each histogram shows the distribution of GAPDH-normalized counts 
for a particular jackpot gene. The counts for each gene in each cell has 
been divided by the GAPDH counts in that same cell. This accounts for 
any volume-dependent differences between cells. Cells that had GAPDH 
counts less than 50 were dropped from this analysis (these cells were 
infrequent and gave abnormally high numbers after normalization, thus 
were dropped). With these cells removed, the dataset contains a total of 
8,477 cells. d, Heat map showing the odds ratio for co-expression between 
all pairs of genes in WM989-A6 cells (1 of n =  2 biological replicates 
shown). Dark grey boxes label pairs where there were zero cells with 
counts that exceeded the high-expression threshold for both genes. The 
heat map in the middle has the same thresholds for designating cells as 
‘high’ or ‘low’ as used in Fig. 3b. Meanwhile, the heat map on the left shows 
the same analysis with the thresholds set to 1/2 of the their value in  
Fig. 3b and the heat map on the right shows this analysis with thresholds 
set to twice their value in Fig. 3b. When the thresholds are at 1/2, the result 
is very similar to that in Fig. 3b. However, doubling the threshold leads to 
many gene pairs that do not have any cells that are ‘high’ for both genes 
(indicated by the dark grey boxes). e, Heat map showing odds ratios for 
WM989-A6 data after 4 weeks in drug (1 of n =  2 biological replicates 
shown).
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Extended Data Figure 5 | Sorting for EGFR-high cells enriches for 
pre-resistant cells and removing drug from resistant cells does not 
appear to reverse the resistant phenotype. a, Quantification of three 
biological replicates of the experiment depicted in Fig. 1f. b, c, Histograms 
showing the transcript abundance measured by RNA FISH in untreated 
and FACS-sorted EGFR-high and mixed cell populations (n =  1). The 
green histograms are from the EGFR-high population and the grey 
histograms are the mixed population. The percentage of highly expressing 
cells are labelled on each plot. Panel b shows resistance marker genes 
EGFR, WNT5A, SERPINE1 and PDGFRB, and panel c shows melanocyte 
development genes SOX10 and MITF, and a housekeeping gene GAPDH. 
d, Histograms of percentage of cells that have high expression of a 
particular number of genes simultaneously. The left histogram is from  
the FACS-sorted EGFR-high cells, and the right histogram is from the 
mixed population. e, Box plots summarize the single-cell RNA FISH 
counts for EGFR and NGFR in flow-sorted populations shown in  
Fig. 3c. These results show that sorting the high populations indeed 

enriched for EGFR and NGFR mRNA, thus validating the sort procedure 
(n =  1). Furthermore, it shows that the double sorting does not further 
enrich for either EGFR or NGFR mRNA alone, showing that the effects of 
the double sort do not arise from a further enrichment of either EGFR- or 
NGFR-high cells per se, but rather the combination of both in the same 
cell. f, Isolated resistant subclones are stably resistant to vemurafenib. 
We established stably resistant subclones of WM989-A6 cells grown 
in vemurafenib by culturing genetically homogeneous WM989-A6 
subclones, adding drug, then isolating small resistant colonies and 
expanding them in the presence of drug into large populations. For three 
such resistant subclones, we removed drug for a period of three weeks 
(‘drug holiday’), then added drug back for a week and looked for response. 
Generally, the cells looked fairly similar to the pre-holiday state and 
continued to proliferate, indicating that they remained insensitive to drug 
despite the prolonged holiday from drug exposure. The bottom panel is a 
control experiment consisting of a non-resistant parental line exposed to 
drug, showing the morphological changes associated with drug response.
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Extended Data Figure 6 | See next page for caption.
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LETTER RESEARCH

Extended Data Figure 6 | Iterative RNA FISH enables quantification 
of genes that are expressed in rare cells and control genes that are 
expressed throughout a population. a, RNA counts are consistent 
whether a gene is probed on the first cycle of iterative RNA FISH or 
subsequent cycles. Box plots summarizing RNA FISH mRNA counts 
for each gene in the 19-gene panel (shown in Fig. 2a). We probed each 
gene from the panel in resistant WM989-A6 cells without performing 
iterative hybridizations (n =  1 with further validation performed on a 
five-gene panel; note that we used resistant cells because the generally 
higher expression levels allowed for more robust comparisons). We then 
performed iterative RNA FISH with all the probes and compared the total 
mRNA counts. We took image z-stacks of each sample and captured a total 
15–25 cells per sample. Expression levels were similar between the first 
round of hybridization and all subsequent hybridization cycles. The colour 
of the box plot indicates the hybridization cycle during which we used 
each probe. The P value for differences in RNA counts between the cycles 
are labelled above each plot. Some variability may be due to sampling 
with genes that have low and/or highly variable expression, and in these 
instances we expect some differences in the two count distributions.  
There is some loss for some genes in later cycles, but we do not believe  
that affects our qualitative findings of rare, highly expressing cells.  
b, Housekeeping genes correlate more with each other than with resistance 
markers and vice versa. We performed RNA FISH on 8,672 non-drugged 
cells with probes targeting LOXL2 and AXL (both of which exhibit rare-
cell expression) and LMNA and GAPDH, both of which are control genes 
not associated with resistance (1 of n =  2 biological replicates shown). We 
then performed principal component analysis to determine which genes 
co-vary with which other genes. We transformed the vector representing 
the expression levels of each cell into the space spanned by the first two 
principal components. Arrows represent transformations of unit vectors 
of the specified gene into this same space. We observed two rough axes of 

variability, one corresponding to the GAPDH and LMNA and the other to 
AXL and LOXL2. Thus, these results show that there is substantial  
co-variation in housekeeping genes and in resistance markers, but that 
these two axes of variation separate. c, Same plot as in b, but with the RNA 
FISH data shown for WM989-A6 in Fig. 2b. d, There are subpopulations 
of cells that have high expression of multiple resistance marker genes. 
Histogram of number/fraction of cells that have high expression for a 
particular number of genes simultaneously, both before, immediately after 
and then 4 weeks after application of drug (1 of n =  2 biological replicates 
shown). We found that immediately after adding drug, there was a large 
general decrease in the amount of high-expressing cells, but a few cells 
remained that expressed several marker genes at once. This suggests, but 
certainly does not prove, that these multi-expressing cells may be the 
pre-resistant cells. At best, it establishes that such a correspondence is 
plausible. e, We used RNA FISH analysis to look (in WM989-A6 cells) 
at the expression of APCDD1 cells, which was identified as a potential 
marker of drug-induced reprogramming (as opposed to pre-resistance). 
We measured APCDD1 expression in a total of 61,770 (20,030 in replicate 
1 and 41,740 in replicate 2) cells before adding drug and 11,452 (7,138 
in replicate 1 and 4,314 cells in replicate 2) cells after cells became stably 
resistant (n =  2 biological replicates shown). Given the number of cells 
analysed, we expected that roughly 30 cells in the untreated population 
would be pre-resistant (assuming conservatively that the frequency of  
pre-resistance is 1:2,000), but despite that, we found essentially no cells 
with APCDD1 expression levels approaching those of even the median 
resistant cell. Thus, expression of this gene must have changed upon the 
pre-resistant cell becoming stably resistant in the presence of drug, as 
opposed to a selection effect in which high levels of expression in  
pre-resistance cells become prevalent owing to those cells surviving  
rather than reprogramming.
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Extended Data Figure 7 | Gini analysis on other single-cell expression 
datasets and network structure for rare highly expressing cells. a, Rare 
cells expressing high levels of resistance genes are suggested by single-
cell sequencing data from (ref. 21). Histograms of normalized single-cell 
expression data for nine marker genes, including all malignant cells 
from this dataset. b, Study of Gini coefficients based on single-cell RNA-
sequencing data (looking at patient 79 with 469 cells; results similar for 
other patients). As per GiniClust19, we first plotted the Gini coefficient 
versus the maximum expression level out of all cells examined (results 
similar if one uses the mean instead of maximum). As the authors of 
the referenced work did, we found a strong anti-correlation, which 
presumably results from the large number of artefactual zeros in the 
datasets that inflate Gini coefficients in general for lowly expressed genes. 
As a positive control, we examined 405 genes that we know to be jackpot 
genes (high fold change in EGFR-high cells versus cells exhibiting a 
mixed distribution of EGFR expression levels), and we found that they 
were essentially randomly scattered throughout the distribution. We then 
plotted genes we performed RNA FISH on. We found again that they were 
squarely in the middle of the distribution and not towards the top right 
of the region, which is where one would expect to find abnormally high 
Gini coefficient genes. There are two possible interpretations of our data. 
One is that the Gini coefficients of the genes we selected are not especially 
different from those of similarly expression matched cells, and so the genes 
we selected do not comprise a deviant subset of all genes. Another is that 
single-cell RNA-sequencing data has a number of known and unknown 
artefacts that make Gini analysis difficult. We favour the latter based on 

our experience with RNA FISH and the results of Battich and Stoeger et al. 
(ref. 35), but our current analysis leaves us unable to resolve this for now. 
We do, however, note that Tirosh et al. (ref. 21) do report low-frequency 
AXL-positive cells via immunofluorescence, which is directly comparable 
and consistent with our RNA FISH results. c, Gini analysis of 26 references 
genes from Padovan-Merhar et al (ref. 17). Padovan-Merhar et al. 
performed RNA FISH to obtain single-cell RNA FISH counts for a panel 
of 26 genes across a range of expression values and degrees of variability. 
We calculated the Gini coefficient for each gene. We found that 24 out of 
the 26 genes had low Gini coefficients (less than 0.5), while two had Gini 
coefficients slightly higher than 0.5. None were as high as the highest 
among our panel of pre-resistance markers. These results suggest that our 
panel of resistance markers have higher degrees of rare-cell expression 
behaviour than average, although a more unbiased RNA FISH analysis 
with a more complete set of genes would make such a conclusion more 
definitive. d, Phixer analysis reveals the network structure of rare-cell 
expression (see Supplementary Discussion 1). Histogram of the  
ϕ mixing coefficient (edge strength) for all edges in the inferred network 
for melanoma undrugged cancer cells. To illustrate the network we select 
the 34 strongest edges (non-shaded portion), and this corresponds to 
selecting edges with ϕ  ≥  0.18. e, Gene interactions obtained using the 
phixer algorithm applied to the single-cell RNA FISH data from cancer 
cells. Each directed edge and its corresponding strength (ϕ mixing 
coefficient) quantifies the effect of an upstream gene on the probability  
of rare-cell expression of a downstream gene.
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Extended Data Figure 8 | Analysis of multiple patient-derived 
xenografts reveals cells that sporadically express high levels of some 
resistance markers. a, Table summarizing results of our patient-derived 
xenograft experiments, including the four different models and all the 
genes tested with each. b, Histograms show full distribution of mRNA 
expression for genes for which we saw convincing signal. Note that for 
some expressing genes, there were sporadic noise spots in the analysis, 

leading to some cells with, say, transcript counts of 1–2 that are probably 
spurious. c, Image panel of marker gene expression in the patient-derived 
xenografts. d, Computational representation of CYR61 mRNA expression 
in patient-derived xenografts. Each cell is represented by a dot on this 
plot and the colour of the dot represents the number of RNA in that 
particular cell as indicated by the colour scale bar. e, Histograms show full 
distribution of mRNA expression for CYR61 and LOXL2 in WM4335.
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Extended Data Figure 9 | Analysis of resistance after sorting by NGFR 
or AXL. a, We sorted three cell lines (WM989-A6, WM983B-E9, and  
SK-MEL-28) by NGFR antibody staining and applied vemurafenib for 
three weeks to look for differences in resistance. In WM989 cells and  
SK-MEL-28 cells, we observed an increased amount of resistant cells after 
NGFR sorting (two biological replicates shown). In WM983B cells, we  
did not observe an enrichment in resistant cells, suggesting that NGFR is 
not resistance marker in this cell line (two biological replicates shown).  
b, We performed analysis of RNA-sequencing transcript abundance  
levels in a number of independent subclones of WM989-A6 and 
WM983B-E9 both before drug addition, after 48 h of drug addition,  
and after isolating stably resistant subclones. We found that NGFR 
was strongly associated with resistance in 3 of 10 clones, whereas in 
WM983B-E9, just 2 of 37 showed upregulation of NGFR. c, We sorted  
WM989-A6 cells by AXL antibody staining and applied vemurafenib to  

look for differences in resistance. Three biological replicates shown. For  
each replicate, we recovered a different number of cells from the sort 
causing each experiment to have a different number of cells at the start  
of drug treatment. These numbers are shown in parentheses above  
each image. After sorting, biological replicates 1 and 2 were in drug  
for 28 days before imaging and biological replicate 3 was in drug for  
17 days before imaging. d, Example of plots from FACS plots showing 
the existence of a population of dead cells that we excluded. e, Validation 
of the AXL sorting by RNA FISH analysis post sort. f, EGFR signalling 
affects the burn-in phase of resistance. Pre-treatment with lapatinib and 
vemurafenib and corresponding quantification of number of resistant 
colonies. g, Co-treatment of lapatinib and vemurafenib (also vemurafenib, 
lapatinib and vehicle only). No growth inhibition for lapatinib and vehicle 
only (1 of n =  2 biological replicates). h, Schematic of resistance model.
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Extended Data Figure 10 | See next page for caption.
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Extended Data Figure 10 | RNA-sequencing on FACS-sorted EGFR-
high cells shows that sporadically expressing genes are more highly 
expressed in EGFR-high cells than the mixed population. a, We sorted 
EGFR-high cells at different time points in vemurafenib treatment 
(untreated n =  3, 1 week n =  2, and 4 weeks n =  2) and performed RNA-seq 
and ATAC-seq on the sorted populations. Bar plots showing percentage of 
the resistance transcriptome that has become activated at different levels in 
each of the samples. Activation index is defined as log2 of the fold change 
divided by the total log2 fold change for the gene between the bulk non-
resistant and bulk stably resistant populations. We then performed ATAC-
seq analysis to identify differentially accessible sites between the sorted 
cell populations; example tracks shown displaying accessible site loss and 
gain from one of two replicates. b, Dot plot comparing the gene expression 
differences between EGFR-high and the mixed cell population. The y axis 
shows the log2 fold change between the EGFR-high and mix cells, and 
the x axis shows the different time points in drug (untreated, 1 week, and 
4 weeks). Dots that fall above the zero line represent samples that have 
higher expression in the EGFR-high cells and dots that fall below the 
zero line represent samples that have lower expression in the EGFR-high 
cells. The genes summarized here are the same panel of genes used for 
multiplex RNA FISH in Fig. 2a. Each dot represents a separate biological 
replicate. There are 3 biological replicates for the untreated condition, 
2 biological replicates for week 1, and 2 biological replicates for week 4. 
We found that 8 of the 10 genes that exhibited rare expression behaviour 

also exhibited increased expression in the EGFR-high cells (EGFR, AXL, 
NGFR, WNT5A, SERPINE1, JUN, LOXL2 and PDGFRB). c, Control genes 
do not show as much enrichment in the EGFR-high subpopulation as the 
pre-resistance marker genes. We sorted by EGFR antibody to isolate the 
EGFR-high subpopulation of cells and then performed RNA-seq on these 
populations as well as an EGFR-mixed population. Dot plots show the 
log2 fold change in gene expression for a set of control genes and a set of 
resistance marker genes. Each dot represents a separate biological replicate 
(paired EGFR-high/EGFR-mixed). The horizontal line at y =  0 represents 
no change in the EGFR-high samples relative to the mixed population. For 
the resistance marker genes (EGFR, AXL and NGFR), there is significantly 
more expression in the EGFR-high sample, while the control genes do 
not show large differences, showing that they do not correlate with the 
expression of the resistance markers. d, EGFR-high cells are proliferating 
based upon expression of cell cycle markers. Bar plot showing the fraction 
of max expression for cell cycle genes (CCNA2 and CCND1) across  
EGFR-high, mixed and EGFR-negative populations at each time point.  
e, EGFR-high cells do not express markers of slow-cycling subpopulations. 
Bar plot showing the fraction of maximum expression for KDM5A and 
KDM5B, which are both markers of slow-cycling subpopulations in 
melanoma6,20, across EGFR-high, mixed and EGFR-negative populations 
at each time point. Note that we only collected an EGFR-negative sample 
at 4 weeks because this was the only time point where the EGFR-high cells 
represented a significant portion of the total mixed population (> 1%).
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