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SUMMARY
Cancer cells exhibit dramatic differences in gene expression at the single-cell level, which can predict
whether they become resistant to treatment. Treatment perpetuates this heterogeneity, resulting in a diver-
sity of cell states among resistant clones. However, it remains unclear whether these differences lead to
distinct responses when another treatment is applied or the same treatment is continued. In this study, we
combined single-cell RNA sequencing with barcoding to track resistant clones through prolonged and
sequential treatments. We found that cells within the same clone have similar gene expression states after
multiple rounds of treatment. Moreover, we demonstrated that individual clones have distinct and differing
fates, including growth, survival, or death, when subjected to a second treatment or when the first treatment
is continued. By identifying gene expression states that predict clone survival, this work provides a founda-
tion for selecting optimal therapies that target the most aggressive resistant clones within a tumor. A record
of this paper’s transparent peer review process is included in the supplemental information.
INTRODUCTION

Individual cancer cells frequently exhibit diverse responses to

their environment and to treatments, resulting in some cells sur-

viving while others die. These surviving cells can contribute to

the development of treatment-resistant tumors, limiting the

effectiveness of treatment. Although genetic differences often

account for these varied responses,1–3 non-genetic factors,4

such as epigenetic state,5,6 protein levels,7 gene expression,8–11

and cell-cycle stage,12 can also contribute to therapy resistance

and survival in a hypoxic microenvironment.13,14 Upon treat-

ment, a subset of cancer cells survive and generate clones

that are resistant to therapy. These resistant clones can exhibit

high interclonal heterogeneity, characterized by divergent gene

expression states and invasive properties.9 However, it remains

uncertain how these heterogeneous resistant clones respond

when subjected to a second treatment.

Second-line treatments are typically less effective compared

with first-line treatments.15–18 However, it is unclear how this

occurs at the level of resistant clones or individual cells. Specif-

ically, it is unknown whether all resistant clones respond uni-

formly to a second treatment or whether they exhibit different re-

sponses (Figure 1A). Furthermore, when resistant clones

undergo prolonged treatment with the same agent, it is unknown

whether some clones grow more than others. While it is evident

that treatment can drive clones into diverse resistant states,9

their phenotypic consequences have yet to be revealed.
C

To address this gap, we developed an experimental and

computational pipeline for long-term tracking of cancer cell

clones through sequential and prolonged treatments. We em-

ployed DNA barcoding in melanoma cells and used both

genomic DNA (gDNA) and single-cell RNA-sequencing

(scRNA-seq) to monitor transcriptional and clonal changes

over time. We separately applied a panel of three treatments,

allowed 4 weeks for the development of resistant clones, and

then divided samples so that cells from each resistant clone

were separately treated again with each of the three treatments.

This approach allowed for the same clones to be profiled through

all combinations of treatments and treatment orders. Applying

this technique, we found that clones exhibit divergent responses

to the second treatment. Furthermore, cells within a resistant

clone maintain their transcriptional similarity throughout both

prolonged treatment with a single agent and sequential treat-

ment with multiple agents. Finally, we demonstrated that gene

expression differences between clones underlie a clone’s ability

to survive sequential and prolonged treatment.

RESULTS

Melanoma cell clones exhibit variable responses to a
first and second treatment
To study cancer cell responses through sequential treatments,

we selected three agents relevant to melanoma cells that have

diverse mechanisms of action: (1) combined treatment with
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Figure 1. Melanoma cell clones exhibit variable responses to a first and second treatment

(A) Shown are two possible scenarios for how clones could respond to sequential treatment with different agents. All resistant clones derived from one treatment

could have the same response to a second treatment (top), or they could have different responses to a second treatment (bottom).

(B) WM989 BRAF V600E mutant melanoma cells with a nuclear GFP tag imaged after 4 weeks in CoCl2 followed by 4 weeks in combination dabrafenib and

trametinib (Dab/Tram, top left). The top left images show whole-well scans of the clones. The colored boxes show zoomed images selected from the whole well.

Orange shows a clone that grew in the second treatment, blue shows a clone that remained a similar size in the second treatment, and red shows a clone that died

in the second treatment. CoCl2-resistant cells tend to grow on top of each other causing some cropped images to look out of focus. Scale bars in whole-well

scans represent 5 mm, while scale bars in cropped scans represent 500 mm and apply to all cropped scans.
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dabrafenib19 and trametinib,20 which are targeted inhibitors of

V600E mutant BRAF and MEK, respectively, (2) CoCl2, which

mimics hypoxia by activating many of the same stress re-

sponses,21,22 and (3) the chemotherapeutic cisplatin, which kills

cells by cross-linking DNA and inhibiting DNA replication.23 We

first investigated whether all clones that develop resistance to

one of these treatments exhibit the same response to a second

treatment. To visualize individual clones, we sparsely plated

BRAF V600E mutant WM989 melanoma cells with a nuclear

GFP tag and treated with either dabrafenib and trametinib in

combination, CoCl2, or cisplatin for 4 weeks. These treatments

resulted in resistant clones that were easily resolved by imaging

(Figures 1B and S1). We then applied a different treatment from

our panel to these cells for another 4 weeks. We found that the

individual resistant clones originating from the first treatment ex-

hibited diverse responses to the second treatment, consistent

with our second hypothesis in Figure 1A. By examining all the

clones on the plate, we found that individual clones either

grew, survived with minimal growth, or died in a second treat-

ment (Figures 1B and S1). Thus, we concluded that resistant

clones originating from one treatment could display highly vari-

able responses to a second treatment. This finding motivated

our study of resistant clones at the single-cell level to understand

why some survive while others die with sequential treatments.

To build on our initial observation that resistant clones showed

variable responses to a second treatment, we sought to gener-

alize this result across a large number of clones and treatment

conditions. We used cellular barcoding to allow us to track resis-

tant clones acrossmultiple treatments and through time.9,11,24,25

We began by uniquely labeling individual cancer cells with a

barcoding library developed by Emert et al.26 (Figure 2A). We

then allowed cells to undergo a limited number of divisions

(�5.5 doublings; Table S2), producing numerous cells with the

same barcode while preserving their gene expression similar-

ities.11,26We performed barcode sequencing on a subset of cells
214 Cell Systems 15, 213–226, March 20, 2024
to identify clones present before treatment and then divided

the remaining population of cells three ways for separate initial

treatments with either combination dabrafenib and trametinib,

CoCl2, or cisplatin. After 4 weeks of treatment, we performed

scRNA-seq and barcode sequencing on a subset of surviving

cells and replated the remaining cells from each treatment con-

dition to receive a second round of treatment, with either the

same or a different agent, continuing for 4 more weeks or until

reaching confluency.We then repeated scRNA-seq and barcode

sequencing of the surviving cells from the second round of treat-

ment (Figure 2A). At each time point, we also sequenced the

barcodes from the gDNA of a subset of cells to avoid undersam-

pling the population-level clone dynamics by only including cells

captured in the scRNA-seq (see STAR Methods). In summary,

this experimental framework yielded quantitative tracking of

the clones present before treatment, after the first treatment,

and after the second treatment, aswell as single-cell and clonally

resolved transcriptomics of the resistant cells after the first and

second treatments.

We first analyzed the gDNA barcode sequencing data to track

clones before treatment and after each round of treatment. To

equate our sequencing read data to a relative number of cells

and set thresholds for resistant clones, we added a ‘‘ladder’’ of

barcodes to each sample, consisting of defined numbers of cells

with known barcodes (see STAR Methods). Using this ladder,

we confirmed that sequencing reads increase with greater cell

numbers (Figure S2A). Consequently, clones that are highly

represented in the population will have a large number of

sequencing reads, and those that are lowly represented will

have few or no reads (Figure 2B).

Having established that barcode sequencing reads serves

as a quantitative measurement of cell abundance, we

next confirmed whether cells with the same barcode have

similar responses to treatment. This behavior has been previ-

ously observed for BRAF inhibitors and MEK inhibitors in
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melanoma9,26 and is critical for experiments using barcoding to

track clones in resistance. Thus, we tested whether the resis-

tance mechanisms to all agents in our study are heritable

through cell division using a barcoding strategy adapted from

prior work.9,26 Using the same library as above, we transduced

WM989 melanoma cells with barcodes, allowed them to grow

through�6 doublings, and then split them into separate samples

for treatment, with two samples receiving each treatment. We

extracted gDNA and sequenced the barcodes to assess for

clone abundance in the separate samples. We found high corre-

lation in barcode abundance between replicates for dabrafenib

(Figure S2B), trametinib (Figure S2C), CoCl2 (Figure S2D), and

cisplatin (Figure S2E). We therefore concluded that the resis-

tance phenotypes from these treatments aremediated by herita-

ble processes that are largely preserved across cells through

�6 divisions.

We next askedwhether clonal growth differences before treat-

ment could explain growth through the first treatment (Fig-

ure S2F). We found that some of the largest clones in the un-

treated samples were also the largest clones after treatment

with each agent. However, for each treatment, we also observed

clones with low prevalence in the untreated sample, but high

prevalence after the first round of treatment. Thus, initial growth

differences in untreated clones are not sufficient to explain treat-

ment outcomes.

When we compared the abundance of individual clones be-

tween the first and second treatments, we observed three

distinct phenomena, which are schematically depicted in Fig-

ure 2B. First, we observed clones where the cells survived the

first treatment while exhibiting minimal growth but then grew

into large clones during the second treatment. Second, we

observed clones that grew well during both the first and second

treatment. Third, we also observed clones that grew well in the

first treatment but then died and were absent after the second

treatment. These results reinforce the notion that clonal differ-

ences in cells play an important role in response to a second

treatment.

When comparing the clones captured after each of the first

treatments, we detected a larger number of clones following

cisplatin treatment than after combination treatment with dabra-

fenib and trametinib or CoCl2 (Figures 2C and 2D). Furthermore,

numerous clones with low abundance after initial treatment with

dabrafenib and trametinib or CoCl2 expanded when cisplatin

was applied as the second treatment (Figure 2C). Although not

entirely unique, secondary treatment with cisplatin selected for

different clones than secondary treatment with dabrafenib and

trametinib or with CoCl2. Particularly notable in the case of

cisplatin, we also saw that not all clones that survived the initial
Figure 2. DNA barcoding allows for tracking the transcriptome of clon

(A) Schematic showing experimental protocol for clone tracking and scRNA-seq

rafenib and trametinib (Dab/Tram), CoCl2, or cisplatin (see STAR Methods).

(B) Schematic showing how sequencing reads from the genomic DNA of cells th

(C) Heatmaps showing 100 randomly subsampled and rank-ordered clones det

(right) followed by their abundance in the second round of treatment. Individua

sequencing clonal barcodes from gDNA of surviving cells.

(D) The number of total detected clones per condition are displayed in their assign

the threshold of detection after treatment 1 that were later detected in treatment 2

treatment are displayed below each heatmap.
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treatment were detected at the second time point with the

same treatment. This result is surprising, as we would expect

these clones to still be resistant at the second time point if they

were resistant at the first. While it is possible that some clones

are not remaining resistant through time, another possibility is

that differences in growth rates between clones lead to different

representations of the clones in the sequencing data. Particularly

when we treat with cisplatin, we find that a few clones lose con-

tact inhibition and grow very large (Figure S1). Colonies such as

these could dominate the second time point and lead to less

capture of small, yet still present clones. Broadly, these findings

highlight the diverse clonal dynamics that can emerge with a sin-

gle treatment and upon sequential treatments.

Treatment histories are remembered in gene
expression states
Recent studies demonstrate that duration and dose of treatment

can influence the transcriptional state of cancer cells.8,9,27

Therefore, we asked whether the treatment history of multiple

agents can be observed in the gene expression of surviving cells,

and whether the first or second treatment has a greater effect on

the final transcriptional state of a cell. We generated a uniform

manifold approximation and projection (UMAP) of the final state

of every cell that received two rounds of treatment (hypothetical

data in Figure 3A; actual data Figure 3B). For each of the three

treatments used, we then calculated the pairwise Pearson corre-

lations in gene expression between cells that received the treat-

ment first and compared them with the Pearson correlations of

cells that received that treatment second (Figure 3B). To provide

a baseline for comparison, we randomly sampled a group of the

same number of cells from each condition and calculated a Pear-

son correlation among the random sample. Across every treat-

ment, whether grouped by either the first or second therapy,

the average pairwise Pearson correlation of gene expression

similarity was at least �3.5-fold higher than randomly grouped

cells. We thus concluded that the final gene expression states

of cells that received multiple treatments are influenced by

both the first and second treatments.

We next compared themagnitude of the effects of the first and

second treatments. We found that secondary treatment with

dabrafenib and trametinib (�10.5-fold greater in average corre-

lation) and cisplatin (�5-fold greater in average correlation) had

a greater effect than initial treatment on gene expression as

measured by the Pearson correlation coefficient (Figure 3B).

However, we found the opposite result for cells treated with

CoCl2 (�2.5-fold less in average correlation). Therefore, cells

receiving CoCl2 as their first treatment were transcriptionally

more similar than cells treated with CoCl2 as a second treatment.
es through multiple rounds of treatment

of WM989 BRAF V600E mutant melanoma cells through treatment with dab-

at survived a treatment provide a quantitative readout of treatment response.

ected after initial treatment with Dab/Tram (left), CoCl2 (middle), and cisplatin

l clones are colored by the ln(reads per million [RPM] + 1) using data from

ed color. It should be noted that there are clones whose abundance were below

. The total number of unique clones that were detected after the first or second
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Figure 3. The treatment histories of cells are reflected in their gene expression

(A) Schematic showing the theoretical possibilities of the first treatment driving endstate gene expression (top) or the second treatment driving endstate gene

expression (bottom). Displayed are how these possibilities would look in UMAP space or plotted as pairwise Pearson correlations between cell transcriptomes.

(B) (Left) UMAP (GEO: GSE253739) of the nine conditions that had received both a first and second treatment. (Center) UMAP with cells that received the

indicated treatment first highlighted in red and those that received the treatment second highlighted in blue. (Right) Quantification of cell similarity using pairwise

Pearson correlations of gene expression (top 2,000 most variable genes). For combination dabrafenib and trametinib treatment (Dab/Tram), pairwise Pearson

correlations between cells that received Dab/Tram first (treatment 1 [T1]) were �3.5-fold higher than the matched random sampling of cells (random control 1

[R1]), while correlations between cells that received Dab/Tram second (treatment 2 [T2]) were �37-fold higher than the matched control (random control 2 [R2])

and �10.5-fold higher than those that received Dab/Tram first. For cisplatin treatment, pairwise Pearson correlations between cells that received cisplatin first

were�6-fold higher than the matched random sampling of cells, while correlations between cells that received cisplatin second were�28.5-fold higher than the

matched control and�5-fold higher than those that received cisplatin first. For CoCl2 treatment, pairwise Pearson correlations between cells that received CoCl2
first were �13.5-fold higher than the matched random sampling of cells and�2.5-fold higher than those that received CoCl2 second, while correlations between

cells that received CoCl2 second were�5.5-fold greater than thematched random control. All comparisons were statistically significant by a two-sided t test with

p < 2.2e�16. Violin plots display 10,000,000 subsampled data points per condition, but statistical comparisons and averages were calculated on non-sub-

sampled data. Mean values are displayed below each graph.
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None of these findingswere affectedwhen cells that received the

same treatment twice were omitted (Figures S3A–S3C). These

results collectively indicate that both the initial and subsequent

treatments contribute to a cell’s ultimate gene expression state,

with the degree of influence varying depending on the treatment.

Despite treatment-induced changes in gene expression,
cells within a clone remain transcriptionally similar to
one another
Given that both the first and second treatments influence a

cell’s final gene expression state, we next wondered whether

these treatment-induced changes effectively eliminated the in-

traclonal similarities in gene expression that have been previ-

ously described in multiple studies.9,11,26 Thus, we analyzed

the cells within each clone to assess if they retained transcrip-
tional similarity after each treatment. For each sample, we

identified resistant clones and calculated pairwise Pearson cor-

relations between all cells within each clone (Figure 4A). We

compared these pairwise correlations within clones to correla-

tions calculated on 100 size-matched random samples of cells

in the same treatment dataset (Figures S4A–S4L). For every con-

dition, including those from the first treatment and the second

treatment, the Pearson correlations within the clone were higher

than the randomly sampled data (Figures 4B–4M). As expected,

the correlations after prolonged treatment are predominantly

lower than their associated 4-week sample. However, the

pairwise Pearson correlations after the second treatment are still

higher than those of randomly sampled cells. We also found that

the level of transcriptional similarity is not strongly driven by the

clone size, either before or after treatment (Figures S5A–S5O).
Cell Systems 15, 213–226, March 20, 2024 217
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Figure 4. Cells within a clone maintain gene

expression similarities through multiple

rounds of treatment

(A) (Left) Location of the cells from a real clone

(purple) and its matched random control (tan)

from one simulation overlaid on the UMAP of

dabrafenib- and trametinib-(Dab/Tram) resistant

cells (GEO: GSE253739). (Middle) Pairwise Pear-

son correlations of gene expression (top 2,000

most variable genes) of cells from the real clone.

The average of these pairwise Pearson correla-

tions was 0.43. (Right) Pairwise Pearson correla-

tions of gene expression of cells from the simulated

clone. The average of these pairwise Pearson

correlations was �0.03. For the pairwise Pearson

correlation figures, the blocks above the diagonal

are shaded according to the linear color scale to

indicate the correlation, while the numerical value

is displayed in the associated block in the lower

diagonal. The averages of the pairwise Pearson

correlations of the cells within each clone that

received a treatment were compared with those of

random samplings of the same number and sized

clones over 100 simulations. Clones analyzed

ranged from 5 to 11,257 cells. Displayed are the

first simulations for each condition.

(B–M) As follows are the number of simulations

where the observed similarities were higher than

random for each condition by a one-sided Wil-

coxon rank sum test with p < 0.05: (B) Dab/Tram

100/100, (C) Dab/Tram to Dab/Tram 100/100, (D)

Dab/Tram to CoCl2 100/100, (E) Dab/Tram to

cisplatin 100/100, (F) CoCl2 99/100, (G) CoCl2 to

Dab/Tram 100/100, (H) CoCl2 to CoCl2 100/100, (I)

CoCl2 to cisplatin 100/100, (J) cisplatin 100/100,

(K) cisplatin to Dab/Tram 100/100, (L) cisplatin

to CoCl2 100/100, and (M) cisplatin to cisplatin

100/100.
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Figure 5. Treatment with dabrafenib and trametinib induces resistance to CoCl2 in clones marked by high IL6ST expression

(A) Schematic showing how clone 2 only survived CoCl2 treatment after being treated with dabrafenib and trametinib (Dab/Tram).

(B) UMAP (GEO: GSE253739) of dabrafenib- and trametinib-resistant cells. Cells from clones that will not survive (are sensitive to) CoCl2 are colored blue, and

cells from clones that were induced to survive CoCl2 are colored in red (these did not survive CoCl2 when applied as the first treatment).

(C) UMAP of dabrafenib- and trametinib-resistant cells showing relative expression of IL6ST. The color scale describes log-normalized data.

(D) Schematic for the validation of induced resistance. Cells were treated with dabrafenib and trametinib for 4 weeks. Dabrafenib- and trametinib- resistant cells

were then stained for the expression of IL6ST protein and sorted into high (top 30%) and low (bottom 30%) populations. These IL6ST-high and -low populations

were treated with CoCl2 for an additional 4 weeks and then survival and growth was assessed by imaging.

(E) Representative DAPI images of IL6ST-low and -high dabrafenib- and trametinib-resistant cells after CoCl2 treatment (one out of six analyzed whole-well

images are displayed for each of the IL6ST-low and IL6ST-high conditions). We binarized the DAPI-stained nuclei images such that nuclei were white and the

remaining pixels were black. Scale bars represent 2 mm.

(F) Violin plots showing the number of white pixels per well in IL6ST-low vs. -high cells. Each data point is a separate well from the experiment. These numbers

were normalized to a plate that was scanned the day after plating to eliminate differences from seeding. p < 53 10�4 determined by a one-sided t test where the

IL6ST-high cells were expected to have greater survival than the IL6ST-low cells. A second biological replicate is shown in Figure S6D.
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Consequently, we concluded that cells within a clone remain

transcriptionally similar to each other through sequential and

prolonged treatment.

Some clones develop induced resistance with
sequential treatment
Our experimental design, which started with a large pool of

clones to test many sequential treatment combinations, pro-

vided a unique opportunity to identify clones that only survived

a particular treatment after developing resistance to a different

treatment beforehand—a phenomenon we termed ‘‘induced

resistance’’ (Figure 5A). In each ordered combination of treat-

ments, we identified hundreds of clones with induced resistance

(Figures S6A, S6F, and S6G). To measure the gene expression

differences in these induced resistant clones, we performed dif-

ferential gene expression and gene set enrichment analysis

comparing clones with induced resistance to clones that were

sensitive to the second treatment (Figures S6A, S6C, and S6F–

S6I). We discovered significant transcriptional and pathway-

level differences in the induced resistant clones (Figures S6C,

S6H, and S6I). One such pathway enriched in clones that only

survived CoCl2 after developing resistance to dabrafenib and

trametinib was interleukin (IL)-6/JAK/STAT3 signaling (Fig-
ure S6C), of which IL6ST is an upstream cell-surface signaling

transducer whose gene is also highly enriched28 (Figures 5B

and 5C). IL-6, which signals through IL6ST, has previously

been implicated in chemotherapy and targeted inhibitor resis-

tance in multiple cancer types.29–32 We observed that IL6ST is

infrequently expressed prior to treatment (expressed in 2.1%

of cells; Figure S6B) but more frequently expressed after survival

in dabrafenib and trametinib (expressed in 44.2% of the cells;

Figure 5C). These findings suggest that treatment with dabrafe-

nib and trametinib can cause otherwise CoCl2-sensitive clones

to become resistant, with this resistant state being marked by

expression of IL6ST.

Given that dabrafenib- and trametinib-resistant cells are het-

erogeneous in their expression of IL6ST, we sought to experi-

mentally validate that these IL6ST-high cells were indeed more

resistant in CoCl2. We first generated dabrafenib- and trameti-

nib-resistant cells by treating them for 4 weeks. We then sorted

these cells based on their expression of IL6ST protein and iso-

lated the top 30% as IL6ST-high and the bottom 30% as

IL6ST-low, selecting these cutoffs based roughly upon the het-

erogeneity observed in scRNA-seq. We then treated the sorted

samples with CoCl2 to test for differences in cell survival and

growth (Figures 5D and 5E). We found that IL6ST-high samples
Cell Systems 15, 213–226, March 20, 2024 219
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had more cells after treatment with CoCl2 (Figures 5F, S6D, and

S6E), thus confirming that IL6ST marks the dabrafenib- and tra-

metinib-resistant subpopulation that is then more resistant to

CoCl2. Broadly, this supports our model in which resistance to

one treatment can induce gene expression states that are corre-

lated with resistance to another treatment.

Prolonged treatment with the same agent causes
population-level and clonal changes in gene expression
We next investigated the gene expression changes in cells un-

dergoing prolonged treatment with a single agent. We found

that cells clustered based on the duration of treatment across

our entire panel (Figure 6A). To assess pathway-level changes,

we performed differential gene expression comparing samples

at the first and second time points for each treatment. We

then used enrichGO33 to identify enriched pathways and group-

ed Gene Ontology (GO) terms that were related to similar cellular

functions (Figures 6B and S7A–S7H). In all three treatments, we

found that prolonged treatment resulted in significant changes in

pathway activity, most of which have been reported in the litera-

ture to be involved with treatment resistance or aggressive can-

cer phenotypes.34–41 Thus, across all three different treatments,

we found further evidence that the transcriptional states of the

population change dynamically as a function of the duration of

treatment.27

Considering that treatment duration produced differences in

transcriptional states, we identified two possible explanations

for this observation. One possibility is that all clones undergo

the same population-level changes in gene expression during

treatment. Alternatively, individual clones might have heteroge-

neous changes during treatment, which collectively contribute

to the average signal observed at the population level. To explore

these possibilities, we performed the same pathway analysis

at the clonal level (Figures 6C–6E). In targeted therapy with

dabrafenib and trametinib, the majority of pathways that were

differentially active between 4 and 6.5 weeks of treatment at

the population level were not consistently differentially ex-

pressed on a clone-by-clone basis (Figure 6C). Similarly, path-

ways that were differentially active between cisplatin treated

cells after 4 and 8 weeks at the population level were not re-

flected in most of the individual clones (Figure 6D), suggesting

that clones can have differential responses to prolonged treat-

ment with the same agent.

While the population-level changes with combination dabrafe-

nib and trametinib or cisplatin were largely not evident in the ma-

jority of clones, we found that CoCl2 showed the opposite result.

Almost all CoCl2 clones displayed the same pathway enrichment

as the analysis performed at the population level (Figure 6E).

Despite all of the clones going through similar gene and pathway

expression changes, we still observed drastic changes in cell

growth between clones, with one clone constituting 81% of

the total cells sequenced after 8 weeks in CoCl2. Across all

three treatments, the one pathway where the population-level

changes were reflected in all of the clones was cadherin binding,

yet the directionality of this change varied across treatments.

These findings demonstrate that different treatments can elicit

different responses from individual clones.

We next asked whether these pathway differences also exist

within the cells from a clone. We calculated pathway scores at
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the single-cell level using UCell42 for each of the pathways

analyzed above and verified that average changes in pathway

expression by UCell followed the same trends in Figure 6B (Fig-

ure S8). We used these activity scores to analyze the variability

both between clones (interclonal) and within clones (intraclonal)

after first (Figures S9A and S9C) and second treatments

(Figures S9B and S9D). Broadly, we observed that variability

within the cloneswas greater than variability between the clones.

Further, we found that certain pathways tended to have higher

coefficients of variation than others and that high variability

was most dependent on the pathway itself, rather than the treat-

ment applied or the time point.

Clonal differences in gene expression underlie
response to prolonged treatment with dabrafenib and
trametinib
Given that individual clones can have different gene expression

states after treatment, we next wondered whether the gene

expression state of clones at the first time point could predict

their outcome by the second time point in our experiment.

Such a possibility would indicate that gene expression states

of resistant cells could be valuable in predicting later behaviors

of cells during the same or different treatments. For this analysis,

we focused specifically on combination treatment with dabrafe-

nib and trametinib. Previous works from our lab and others have

shown that EGFR, NGFR, and other receptor tyrosine kinases

are highly associated with intrinsic and adaptive resistance to

dabrafenib and trametinib.8,11,43–46 Our scRNA-seq data of dab-

rafenib- and trametinib-resistant cells from both time points

showed two independent clusters of resistant cells, one which

was high in EGFR and another which was high in NGFR

(Figures S10A–S10D). We hypothesized that these divergent

transcriptional states correlated with differences in survival to

prolonged treatment with dabrafenib and trametinib. After

4 weeks of treatment with dabrafenib and trametinib, we identi-

fied 44 resistant clones, 23 of which were exclusively in the

EGFR-high cluster, five of which were exclusively in the NGFR-

high cluster, and 16 of which had cells in both clusters (Fig-

ure 7A). When comparing cells from clones in the EGFR- or

NGFR-high clusters with melanoma differentiation states out-

lined by Tsoi et al.,47 we found that the EGFR-high cells were

the most ‘‘undifferentiated,’’ while the NGFR-high cells were

the most ‘‘melanocytic’’ (Figures S10H–S10K).

We then followed these 44 clones through an additional

2.5 weeks in dabrafenib and trametinib. We found that 13.0%

and 18.8% of the EGFR-high and mixed clones were no longer

detected, respectively, (as defined by no longer passing resis-

tant thresholds; see STAR Methods). However, 100% of the

NGFR-high clones were not detected at this second time point

(Figure 7A), suggesting that EGFR-high clones survive and pro-

liferate better than NGFR-high clones. The disappearance of

specific clones at the second time point could result from these

clones dying during the extra weeks of treatment, or it might be

due to EGFR-high clones proliferating faster and causing the

NGFR-high clones to be not detected when subsampling for

scRNA-seq. This result aligns with previous findings that mela-

noma cells exhibit a range of differentiation states,47–49 where

the more undifferentiated cells with higher receptor tyrosine

kinase expression (as seen in the EGFR-high clones) are
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Figure 6. Prolonged treatment with the same agent

causes population-level and clonal changes in

pathway expression

(A) UMAPs (GEO: GSE253739) comparing cells sequenced

after 4 and 6.5–8 weeks of treatment with (left) dabrafenib

and trametinib (Dab/Tram), (middle) cisplatin, or (right)

CoCl2.

(B) We identified differentially expressed genes between

6.5–8 and 4 weeks of treatment with each agent. We then

identified GO terms enriched after either the first round of

treatment (blue) or the second round of treatment (red) based

on the log10(q value) and �log10(q value) respectively and

displayed these values in the heatmap. This is a measure of

the confidence of enrichment, not an activity score. GO

terms that were not significantly enriched, or failed other

thresholds, in either direction for a condition are colored in

gray. Enriched pathways were grouped into categories of

related function, and the pathways that make up each group

are detailed in Figure S7.

(C–E) Same analysis as performed in (B) with all of the cells

from each condition (with that comparison displayed again)

on a clone-by-clone basis for all clones with at least five cells

in both rounds of treatment for Dab/Tram, cisplatin, and

CoCl2, respectively. On the right of each subpanel is dis-

played the percentage of total sequenced single cells per

condition from each clone after each round of treatment.

Pathways enriched in both directions are colored yellow.
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Figure 7. Cloneswith highEGFR expression exhibit enhanced survival when subjected to extended treatmentwith dabrafenib and trametinib

(A) Stacked colored bars represent the proportion of cells from each clone with at least five cells after initial treatment (4 weeks) with dabrafenib and trametinib

(Dab/Tram) in the (magenta) EGFR-high cluster or (green) NGFR-high cluster (top). Dotted lines separate clones that are all EGFR-high, mixed EGFR and NGFR

expression, andNGFR-high. Aligned below are the same clones after the second round of treatment (6.5 weeks) with Dab/Tram. Clones that still have greater than

five cells are again colored by their proportion of cells in either the EGFR- or NGFR-high cluster, while clones that are no longer detected (less than five cells) are

colored white.

(B) Experimental protocol for comparing the sizes of EGFR-high and NGFR-high clones.

(C) (Left) Example image (subset of replicate 2, from Figure S11B) showing dabrafenib- and trametinib-resistant cells labeling nuclei with DAPI (gray) and labeling

EGFR (magenta spots) andNGFR (green spots) using hybridization chain reaction (HCR). Predominantly EGFR-high clones are circled inmagenta, predominantly

NGFR-high clones are circled in green, and mixed clones are circled in yellow. (Right) Cropped images highlighting that HCR labels individual transcripts with

spots for EGFR and NGFR. Scale bars represent 200 mm.

(D) Quantification of replicate 1 clone sizes based on total DAPI fluorescence within circled clones from Figure S11A. Data are rank ordered based on clone size,

and clones are colored based on their classification: EGFR-high, NGFR-high, mixed, or ambiguous. Quantification of replicates 2 and 3 are in Figures S11D

and S11E.
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more resistant to BRAFi compared with more differentiated mel-

anocytic cells.8,11When looking at these same clones after treat-

ment with dabrafenib and trametinib followed by CoCl2, many of

the NGFR-high clones also were lowly detected (Figures S10E

and S10F). Conversely, the majority of these 44 clones that

had any detection after treatment with dabrafenib and trametinib

followed by cisplatin were originally NGFR-high or mixed, indi-

cating that NGFR enrichment may indeed be beneficial for sub-

sequent survival through cisplatin (Figure S10G). The enrichment

and depletion of clones with specific expression patterns further

supports the idea that gene expression states confer treatment-

specific survival consequences.

To test whether these NGFR-high clones were dying or less

captured in the scRNA-seq, we aimed to measure EGFR and

NGFR across all resistant clones formed during prolonged treat-

ment with dabrafenib and trametinib. For this purpose, we treated

WM989 melanoma cells with dabrafenib and trametinib for

6.5 weeks and used hybridization chain reaction (HCR) to label

EGFR and NGFR transcripts within resistant clones (Figure 7B).
222 Cell Systems 15, 213–226, March 20, 2024
We classified clones based on the predominant cell type:

EGFR-high (EGFR-high clones), NGFR-high (NGFR-high clones),

or a mixture of both (mixed clones) (Figures 7C and S11A–

S11C). After 6.5 weeks of treatment, we found that the largest

clones were EGFR-high, while small NGFR-high clones were

also present (Figures 7D, S11D, and S11E). This result suggests

that the NGFR-high clones, which were undetected after

6.5 weeks in our clonal tracing experiment, were not dying off dur-

ing the prolonged treatment; instead, they were growing at a

slower rate than the EGFR-high clones. Consequently, the

EGFR-high expression state is indicative of more growth during

the prolonged treatment with dabrafenib and trametinib. More

broadly, these data demonstrate that clonal differences in gene

expression can predict clonal responses to prolonged treatment.

DISCUSSION

Tumor heterogeneity has been extensively studied for the role it

plays in treatment resistance1,2,5–11; however, most of these
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studies have focused on resistance to a single treatment.2,4–8,10

Sequential treatment is a common approach for cancer treat-

ment but has predominantly been studied through clinical trial

data or at the bulk tumor/cell population level.16,50–55 Here, we

focus on the single-cell and single-clone level, addressing how

resistant clones change in their abundance and transcriptional

state over the course of sequential treatments. We combine im-

aging, scRNA-seq, and clonal tracking with cell barcoding to

discover that individual resistant clones show highly variable re-

sponses to a second treatment, which highlights the importance

of studying sequential treatment resistance at a clonal, rather

than population level.

Our findings further support a growing body of evidence that

resistance to treatment cannot be explained by single mecha-

nisms acting in isolation.10,56 Rather, resistance reflects a com-

plex and dynamical process in which diverse and continuously

evolving cellular states are generated.9,27 Our work contributes

another layer of phenotypic complexity by demonstrating that

the diverse clones generated under treatment have differential

sensitivities to subsequent treatments. We further connect the

response of individual clones to specific gene expression states,

thus supporting the notion that response to sequential treat-

ments is nonrandom and occurs at the clonal level. The connec-

tion between phenotype and gene expression is similar to obser-

vations before treatment, where preexisting differences in the

initial state of cells are predictive of treatment outcome.8,26

This study also contributes to our understanding of gene

expression memory. While individual resistant clones have

diverse transcriptional states, the cells within these clones are

transcriptionally similar to each other. These states are heritable,

such that the cells derived from a common parent cell have

related transcriptional profiles. Such heritability has been

measured in the absence of treatment and upon a single

agent,9,11,26,57 but here heritability of gene expression extends

through prolonged and sequential treatments. We speculate

that these clonal gene expression similarities are epigenetically

encoded, but the full mechanisms remain to be elucidated.

Furthermore, this heritability of gene expression is critical for

our experimental design as it enables comparisons between

the same clones receiving different treatments. Given that clones

are still transcriptionally similar after the second treatment, this

experimental and analytical framework could be easily scaled

to include third and potentially even fourth rounds of treatment

for assessing clonal dynamics on longer timescales and with

additional treatments.

While our experimental design captures large resistant clones

after treatment, it is less sensitive for smaller clones as our data

are highly subsampled. The experimental framework relies on

the ability of clones to proliferate for them to be captured at

the different time points and evenly distributed across the sam-

ples. Thus, these data are not able to comment on non-prolifer-

ative states and/or very slow-cycling states, which have

been implicated in pre-existing states associated with resis-

tance.4,5,58,59 While clones consisting of only one or a few cells

can be detected in our data and others,9 they are not likely to

be present across multiple time points or treatment conditions

(Figures S12A–S12G). Rather, because our experimental design

emphasizes the most proliferative clones, we are best equipped

to define how large clones respond and change during sequen-
tial treatment. Subsequent studies and alternative experimental

designs would be needed to better capture the role of small

clones in resistance.

In summary, we find that intraclonal similarities in gene expres-

sion are preserved over multiple months and across different

treatments. Moreover, we show that interclonal differences in

gene expression inform survival and proliferation through sequen-

tial and prolonged treatment, suggesting that the progression of

resistance in these treatments is nonrandom. This knowledge

lays the foundation for future work to target clonal states to pre-

vent resistance to sequential and prolonged treatment.
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Materials availability
This study did not generate new materials.

Data and code availability
Raw and processed scRNA-seq data have been deposited at SRA and GEO (GEO: GSE253739) and are publicly available as of

the date of publication. Raw and processed barcode sequencing data has been deposited at figshare (Figshare: https://figshare.

com/projects/Clonal_differences_underlie_variable_responses_to_sequential_and_prolonged_treatment/192653, Figshare: https://doi.

org/10.6084/m9.figshare.25029338, Figshare: https://doi.org/10.6084/m9.figshare.25024466, Figshare: https://doi.org/10.6084/

m9.figshare.25024463, Figshare: https://doi.org/10.6084/m9.figshare.25021745, Figshare: https://doi.org/10.6084/m9.figshare.

25021730). The merged and normalized seurat object including RNA and clonal barcode reads has been deposited at figshare

(Figshare: https://figshare.com/projects/Clonal_differences_underlie_variable_responses_to_sequential_and_prolonged_treatment/

192653, Figshare: https://doi.org/10.6084/m9.figshare.25021742). All other data reported in this paper will be shared by the lead con-

tact upon request. Accession numbers are listed in the key resources table.

All original code has been deposited at GitHub using Zenodo (https://github.com/SydShafferLab/Schaff_and_Fasse_Cell_

Systems, DOI: Zenodo: https://doi.org/10.5281/zenodo.10552083) and is publicly available as of the date of publication. DOIs are

listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and tissue culture
We performed all experiments on WM989 A6-G3 melanoma cell lines, including variations with a GFP nuclear reporter (H2B-GFP).

WM989 A6-G3 cells were derived fromWM989 cells and single-cell bottlenecked twice. WM989 A6-G3 cell lines were authenticated

and validated as mycoplasma negative.11 We cultured all WM989-derived lines in TU2%media consisting of 78%MCDB 153, 20%

Leibovitz’s L-15, 2% FBS, 1.68 mM CaCl2, 50 U/mL penicillin, and 50 ug/mL streptomycin. We passaged non-treated cells with

0.05% trypsin-EDTA, and treatment-resistant cells were passaged with 0.25% trypsin-EDTA. For lentivirus packaging, HEK293T

cells were cultured in DMEM containing 10% FBS, 50 U/mL penicillin, and 50 ug/mL streptomycin. We passaged HEK293Ts with

0.05% trypsin-EDTA. All cells were maintained at 37�C and 5% CO2.

For experiments using fixed cells, we washed cells with 1x PBS (Invitrogen, AM9625), added 4% formaldehyde in 1x PBS (Fisher,

BPBP531500) for 10 minutes, performed two more washes with 1x PBS, and stored at 4�C in 70% ethanol until cells were stained.

METHOD DETAILS

Treatments
Wemade stock solutions of 500 mMdabrafenib (Cayman, 16989-10), 5 mM trametinib (Cayman, 16292-50 andSelleckChem, 871700-

17-3), 50 mM doxorubicin (Tocris Bioscience, 25316-40-9), and 25 mM CoCl2 (Spectrum Chemical Manufacturing Corporation,

18609836) as follows: dabrafenib, trametinib, and doxorubicin in DMSO, cisplatin in 154mMNaCl, and CoCl2 in nuclease-free water.

For the single-cell experiments, we diluted all agents in culturemedium to a final concentration of 15 mMcisplatin, 50 nMDoxorubicin,

200 mMCoCl2, and 2.5 nM trametinib plus 250 nMdabrafenib for combined dabrafenib/trametinib treatment unless stated otherwise.

MES buffer at 1 M, pH 5.0 (Thermo Scientific, AAJ61960AK) was used to make acidic TU2% media at 6.25 pH.

Treatment resistant clone experiments
We treated H2B-GFPWM989 cells with one of each of the following treatments for four weeks. For cells treated with 200 mMCoCl2 in

TU2%medium, we performed amedia change every three to four days, each time treating with CoCl2 treatedmedia. For cells treated

with 15 mMcisplatin, we treated with cisplatin treated TU2%medium for the first three days, then every following media change used

normal TU2%. For cells treated with 250 nM dabrafenib and 2.5 mM trametinib, we performed a media change every three to four

days, each time treating with dabrafenib and trametinib treated TU2%medium. For the next four weeks of treatment, we treated cells

with a second round of treatment with cisplatin, CoCl2 or a combination of dabrafenib and trametinib using the corresponding pro-

tocol for weeks five through eight.We imaged cells at four weeks (following the first round of treatment) and eight weeks (following the

second round treatment) in the GFP channel (20 msec exposure). Images were contrasted using custom python scripts.

Lentiviral packaging
Wepackaged barcodes into lentivirus following the procedure outlined for the Rewind library.26 In brief, HEK293T cells were cultured

in three 10 cmplates until nearing confluency. For all three plates plus one half a plate worth of excess solution, we combined 1750 mL

Opti-MEM (Gibco, 31985062) with 280 mL PEI (Polysciences, 23966-1) in one tube while another 1750 mL Opti-MEM was mixed with

35 mg (29.2 mL) barcode plasmid, 26.25 mg (20.9 mL) psPAX2 (Addgene #12260), and 17.5 mg (30.2 mL) VSVG (pMD2.G, Addgene

#12259) in a second tube. We incubated each tube at room temperature for fiveminutes before combining them, vortexing, and incu-

bating for an additional 15 minutes. We then slowly added 1106 ml of the mixed solution to each of the three 10 cm plates. After six

hours, we discarded the media and replaced it with seven ml of DMEM. After 24 hours and confirming GFP expression, we collected
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the virus-containing media into a conical tube stored at 4�C and replaced it with another seven mL of fresh media. After collecting

virus twice more at 24 hour intervals, we centrifuged the virus-containing media at 3000 rpm for five minutes. We collected the su-

pernatant and passed it through a 0.45 mm filter (Millipore Sigma, SE1M003M00). Finally, we made 1 mL aliquots and placed them

at -80�C for storage.

Lentiviral transduction
For experiments involving the transduction of WM989 A6-G3 with barcode virus, we seeded cells in six-well plates at 300,000 cells

per well and dropwise added 32 mL (as determined by titration for 20-25% infection efficiency) of freshly thawed virus.We then centri-

fuged the cells at 1750 RPM for 25 minutes and incubated overnight at 37�C. The following morning, we removed the media, washed

the cells once with DPBS, and added fresh TU2% media.

Fluorescence-activated cell sorting (FACS) of barcoded cells
Three days after transducing cells with the GFP-barcode virus, we performed fluorescence-activated cell sorting to isolate GFP-ex-

pressing, barcoded WM989 A6-G3 cells. We used 0.05% trypsin-EDTA to obtain single-cell suspensions, neutralized with TU2%,

washed the cell pellet with 1% BSA-DPBS, and resuspended in 1% BSA-DPBS containing DAPI. We passed the resuspended cells

through a FACS cell strainer (Falcon, 352235) prior to FACS. We performed sorting on a Beckman Coulter MoFlo Astrios sorter with a

100 mm nozzle. We gated for singlets and live cells, then sorted for GFP-positive cells.

Single-cell RNA sequencing experiment
For the single-cell experiment outlined in Figure 2A, we trypsinized cells that had been sorted for being GFP-barcode positive the

previous day and replated 425,000 starting cells. We allowed these cells to double roughly 5.5 times so that we had �45 cells per

clone. We pelleted and froze 1/3 of these cells at -80�C for later barcode sequencing from gDNA. We then plate 225,000 cells in

18 x 10 cm plates each (54 total) for treatment with either a combination of dabrafenib and trametinib, CoCl2, or cisplatin. The

following day, we began treating the cells. For combination treatment with dabrafenib and trametinib and for treatment with

CoCl2, treatedmediawas added every three to four days for four weeks. For cisplatin treatment, we treated cells for three days before

replacing with normal media which was maintained until the end of four weeks. After four weeks, resistant cells were trypsinized.

From each treated population, we removed ¼ of the surviving cells for scRNA-seq of �7,000 cells and barcode sequencing from

gDNA of the remaining cells. The remaining cells from each population were split evenly to receive the three secondary treatments

for an additional four weeks, as previously described. After the second round of treatment was complete, we performed scRNA-seq

on �10,000 cells and froze the remaining at -80�C for barcode sequencing from gDNA. One sample, combination treatment of dab-

rafenib and trametinib into dabrafenib and trametinib, was collected after only 2.5 weeks of secondary treatment as the cells were

nearing confluency.

We performed all scRNA-seq using the 10X Genomics 3’ v3.1 Dual index Single-Cell gene expression kit (10X Genomics, PN-

1000269) on a 10X Chromium Controller. We quantified libraries using the Qubit dsDNA High Sensitivity Assay (Invitrogen,

Q32854) and the Agilent Bioanalyzer High Sensitivity DNA Kit (Agilent, 5067-4626). We then diluted libraries to four nM and pooled

samples. We sequenced pooled samples on a NextSeq 500 with 75 cycle high output kits (Illumina, 20024906) using 28 cycles for

read one, 10 cycles for each index, and 43 cycles for read two.

DNA barcode recovery from scRNA-seq
We amplified DNA barcodes from excess full-length cDNA generated during the 10X workflow as described previously.11 In brief, we

performed targeted amplification of the barcode from the full-length cDNA using primers with Illumina adapter sequences, sample

indices, and staggered bases of different lengths from Goyal et al.9 and Harmange et al.11 (Table S1). For each sample, we diluted

cDNA to 8.75 ng/mL and performed PCR reactions using 5 mL cDNA, 500 nM primers, 25 mL NEBNext Q5 HotStart HiFi PCR Master

Mix (NEB, M0543S), and nuclease-free water for a total volume of 50 mL. We ran reactions on a thermal cycler using the following

settings: 98�C for 30 seconds, 13 cycles of 98�C for 10 seconds and 65�C for two minutes, followed by a final step at 65�C for

five minutes. After PCR, we purified the libraries using 0.7x (35 mL) AMPure XP magnetic beads (Beckman Coulter, A63881) followed

by two 80% ethanol washes and a final elution of our purified barcodes in 20 mL of nuclease-free water per sample. We quantified

purified libraries using Qubit dsDNA High Sensitivity Assay (Invitrogen, Q32854) and the Agilent Bioanalyzer High Sensitivity DNA Kit

(Agilent, 5067-4626). We diluted libraries and sequenced an equimolar pool of all samples on a NextSeq 500 using a 150 cycle mid

output kit (Illumina, 20024904) using 28 cycles for read one to capture the 10X barcodes and UMIs, eight cycles for each index, and

123 cycles on read two to capture the clone DNA barcodes.

Creating DNA barcode ladders
To create standardized ladders to relate gDNA barcode reads to number of cells, we used FACS as described above to sort bar-

coded, GFP-positive single cells into each well of four 96-well plates and cultured the cells in untreated TU2% media as described

above. These single cells were allowed to expand into single-clone colonies which we grew to confluence in 10 cm plates, at which

point we harvested a portion of each clone for barcode sequencing. We left the remainder to expand further. We performed barcode

library preparations on the harvested cells from each clone as described below by isolating gDNA, PCR amplifying the barcode

sequence, and performing double-sided bead cleanup. These sequences were then sent for Sanger sequencing (Eurofins
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Genomics). From the ten clones sequenced, we selected six to use as ladder clones which contained correct conserved regions and

had no ambiguous bases. We selected two clones each to be high, medium, and low abundance clones in the ladder, corresponding

to 1000, 500, or 50 cells. We then trypsinized and counted live cells from each clone via hemocytometer and added the correct num-

ber of cells from each clone into tubes which were stored at -80�C.

DNA barcode recovery from gDNA
We performed barcode library preparations from genomic DNA (gDNA) as previously described with slight modifications.26 In brief,

we thawed cell pellets that had been stored at -80�C and added a ‘‘ladder’’ of cells with known barcode sequences and known initial

cell numbers (two replicates each of 50, 500, and 1000 cells per clone) to each pellet (Figure S2A). We then isolated gDNA from cells

using the QIAmp DNAMini Kit (QIAGEN, 51304), following the spin protocol for DNA purification from blood or bodily fluids. We then

amplified DNA barcodes from gDNA using primers with Illumina adapter sequences, sample indices, and staggered bases of

different lengths from Harmange et al.11 (Table S1). For each sample, we performed several PCR reactions (utilizing 20-40% of

the total isolated gDNA), each containing 500 ng of gDNA, 500 nM primers, 25 mL of the NEBNext Q5 HotStart HiFi PCR Master

Mix (NEB, M0543S), and nuclease-free water to a final volume of 50 mL. We ran reactions on a thermal cycler using the following set-

tings: 98�C for 30 seconds, 23 cycles of 98�C for 10 seconds and 65�C for 40 seconds, and 65�C for five minutes. After PCR, we

pooled individual reactions from the same sample before cleaning. We performed double-sided library purifications on the pooled

samples using first 0.6x (30 mL x the number of pooled reactions) AMPure XPmagnetic beads (Beckman Coulter, A63881) and keep-

ing the supernatant. To the supernatant, we added 1.2x (30 mL x the number of pooled reactions) AMPure XP magnetic beads and

washed twice with 80% ethanol. We eluted our purified barcodes from the beads using nuclease-free water (20 mL x the number of

pooled reactions). We quantified purified libraries using Qubit dsDNAHigh Sensitivity Assay (Invitrogen, Q32854) and the Agilent Bio-

analyzer High Sensitivity DNA Kit (Agilent, 5067-4626). We diluted and made an equimolar pool of all libraries for sequencing on a

NextSeq 500 using a 150 cycle mid output kit (Illumina, 20024904) using 151 cycles for read one to capture the clone DNA barcodes

and eight cycles for each index.

Validating that survival to treatment is deterministic with gDNA barcoding
We transducedWM989 A6-G3melanoma cells with our barcode library (see STARMethods section ‘‘lentiviral transduction’’) with the

only variation being we added 8 mg/ml polybrene (MilliporeSigma, TR1003G) along with the virus and sorted out 350,000 barcoded

cells. We then allowed the population to double�6 times.We randomly split the cells into 12 samples for six different treatments with

two samples receiving each treatment. The treatments were as follows: dabrafenib (1 mM), trametinib (10 nM), CoCl2 (200 mM),

cisplatin (5 mM), doxorubicin (50 nM), and 6.25 pH acidic media. For each sample, cells were plated at 320,000 cells per 10cm plate.

The following day, we began treating the cells every three to four days. In this experiment, cisplatin received two weeks of treatment

followed by two weeks of normal media and doxorubicin treated cells received 2.5 weeks of treatment followed by 1.5 weeks of

normal media while dabrafenib, trametinib, CoCl2, and acid treated cells received treatment for four weeks. After four weeks, the

surviving cells were collected and frozen at -80�C until DNA barcode recovery was performed (see STAR Methods section ‘‘DNA

barcode recovery from gDNA’’). For the 12 samples, we performed two separate PCR reactions with 250 ng of input gDNA with

25 amplification cycles, did a double-sided library purification, and sequenced an equimolar pool of the libraries (see STARMethods

section ‘‘DNA barcode recovery from gDNA’’). These samples did not include a cell barcode ladder.

Using custom R scripts, we combined the reads from the two sequencing samples that corresponded to each of the original 12

biological samples. We then normalized the reads by sequencing depth to obtain the reads per million (RPM) for each barcode in

each of the 12 samples. Finally, we generated scatterplots of the detection of each barcode between the two biological replicates

for each of the treatments and calculated the Pearson correlation coefficient (Figures S2B–S2E).

Induced resistance experimental validation
To test whether a specific cellular state (IL6ST-high) is amarker of induced resistance to a second treatment, we performed an exper-

iment in which we first generated resistance to one treatment, sorted out cells based on marker expression, and then applied the

second treatment. For this experimental design, we first treated WM989 A6-G3 melanoma cells with a combination of dabrafenib

(125nM) and trametinib (1.25nM) for four weeks. Here, we used half of the dosage used in the clonal tracing experiment to increase

our resistant cell numbers for sorting and replating. We then sorted the surviving resistant cells based on their expression of CD130

(IL6ST), which was identified in the scRNA-seq as a marker of cells predicted to be resistant to CoCl2 following dabrafenib and tra-

metinib treatment. We pooled resistant cells using 0.25% Trypsin-EDTA and stained themwith 50 mg/mL PE anti-human CD130 anti-

body at a 1:200 dilution (Biolegend, 10760-758). Using the Beckman Coulter MoFlo Astrios sorter, we sorted cells as ‘IL6ST-high’ if

they were in the top 30% of IL6ST expression and categorized cells as ‘IL6ST-low’ if they were in the bottom 30% of IL6ST expres-

sion. Following sorting, we replated the cells at three different densities in 6-well plates with 500, 1000, or 5000 cells per well. We then

treated them for four weeks with CoCl2 (25mM). We performed two biological replicates for this experiment. With the second biolog-

ical replicate (Figures 5F and S6E), we added an additional plate to account for potential errors in counting. For this plate, we seeded

5000 cells per well into a 6-well plate and fixed the plate immediately after seeding for counting. After four weeks, we formaldehyde-

fixed the treated cells, stained them with DAPI, and imaged them on a Nikon Eclipse Ti2 microscope. For each well, we acquired a

12x12 scan at 4X magnification with 500 msec exposure using a filter set for DAPI.
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EGFR and NGFR HCR RNA FISH
We seeded 20,000 WM989 A6-G3 cells per well into three wells of a glass-bottom 6-well plate (CellVis, P6-1.5H-N), and treated

with dabrafenib and trametinib. After 6.5 weeks of treatment, we fixed the cells using formaldehyde (as described in the Cell

lines and tissue culture section). We performed HCR RNA FISH on the treated and fixed cells as described by Acheampong

et al.67 with minor modifications. We pre-hybridized samples with 0.6 mL of hybridization buffer (5x SSC (Invitrogen,

AM9765), 30% formamide (Ambion, AM9344), 10% dextran sulfate (Fisher Scientific, BP1585–100), 9 mM citric acid (pH 6.0)

(Fisher Scientific, BP339–500), 50 mg/mL of heparin (Sigma-Aldrich, H5515-25KU), 1x Denhardt solution (Invitrogen, 750018),

and 0.1% Tween 20 (Bio-Rad, 1705017)) for 30 minutes at 37�C. We then replaced the pre-hybridization buffer with 0.6 mL

of hybridization buffer containing 2.4 pmol each of EGFR and NGFR HCR RNA FISH. We covered the samples with a glass

coverslip, humidified the samples by filling empty wells with 2x SSC, and incubated at 37�C for seven hours. We then washed

samples four times for five minutes each at 37�C with wash buffer (5x SSC, 30% formamide, 9 mM citric acid (pH 6.0), 50 mg/mL

heparin, and 0.1% Tween 20) followed by two washes with 5x SSCT (5x SSC with 0.1% Tween 20) at room temperature. We

next added 0.6 mL of amplification buffer (5x SSC, 10% dextran sulfate, and 0.1% Tween 20) and let them incubate at room

temperature for 30 minutes. While the samples incubated in pre-amplification buffer, we brought 1.2 uL per well of 3 mM of Mo-

lecular Instruments HCR hairpins conjugated to Alexa Fluor 488 (EGFR) and Alexa Fluor 647 (NGFR) in individual PCR tubes to

95�C and allowed them to cool at a rate of 0.08�C/s to room temperature. We then pooled these hairpins in 0.6 mL per well of

amplification buffer and added them to the sample along with a glass coverslip. The samples in the amplification buffer were

incubated at room temperature for 16 h overnight away from light. Finally, we washed the samples five times for five minutes

each with 5x SSCT and stained with DAPI in 2x SSC.

For imaging, we used a Nikon Eclipse Ti2 microscope and acquired 20x20 scans at 10X magnification using filters for DAPI, GFP,

and Atto647.We used exposure times of 100msec for DAPI, 400msec for Alexa Fluor 488 (EGFR), and 1 s for Alexa Fluor 647 (NGFR).

QUANTIFICATION AND STATISTICAL ANALYSIS

Clone abundance heatmaps from gDNA
We calculated the ln(Reads Per Million (RPM) + 1) of clones with at least two reads in the pre-treatment sample or with reads greater

than one of the two corresponding 50-cell ladder clones in a given initial treatment sample or any subsequent treatment samples. We

then subsampled and rank-ordered 100 clones for display in the heatmaps in Figures 2C and S2F and displayed the number of clones

with at least one sequencing read.

scRNA-seq analysis
We generated gene count matrices using the CellRanger software 5.0.1 (10X Genomics) with the 2020-A hg38 reference genome,

andwe performed downstream analyses in the Seurat v4 package.65We also usedCellRanger Feature Barcode technology tomerge

our custom clone barcodes sequencing with scRNA-seq data. For each sample, we filtered to remove cells with high RNA count

indicating doublets, low numbers of genes detected, and a high percentage of mitochondrial reads. Data was processed using

NormalizeData, FindVariableFeatures, ScaleData, RunPCA, FindNeighbors, FindClusters, and RunUMAP in that order. Downstream

analyses are described in their associated methods sections.

For calculations of the percentage of cells in a condition expressing a gene, a cutoff of greater than one count was used.

Combining scRNA-seq and barcode data
To identify clone barcodes present in our sequencing data, we used a custom pipeline described by Harmange et al.11 and available

here: https://github.com/SydShafferLab/BarcodeAnalysis. Briefly, this pipeline takes in FASTQ files containing sequencing reads of

barcodes from both gDNA and cDNA and identifies unique barcode sequences throughout all files. This code then collapses highly

similar sequences with a Levenshtein distance of eight or less that are likely the same barcode which contains small alterations

caused by small point mutations, PCR artifacts, or sequencing artifacts. The pipeline outputs a reference file along with both

gDNA and cDNA FASTQ files that were corrected for collapsed barcodes. The corrected cDNA FASTQ files and the reference file

can be input into the CellRanger Feature Barcode pipeline to generate count matrices and link cDNA barcode sequencing reads

with their cell of origin based on the 10X barcode and UMI. Additionally, this pipeline separately outputs a list of total counts per bar-

code from either the cDNA and gDNA samples sequenced from each condition.

After combining scRNA-seq with cDNA barcode sequencing data, we found that some cells had reads frommultiple barcodes. To

assign the dominant barcode to each cell, we separately set a reads-based cutoff for each sequencing sample that maximized the

total number of cells that only had a single barcode above the cutoff number of reads. In the case that a cell contained multiple barc-

odes each with reads above the cutoff, we assigned that cell a dominant barcode only if the reads of the highest detected barcode

were 3-fold higher than the second highest detected barcode. Cells without a dominant barcode were excluded from clone-based

analyses.

Determining resistant clones for single-cell analysis
From the gDNA reads, we identified resistant clones in each sample as any clone with more reads than the lower number of

reads associated with one of the two 50-cell ladder clones in that sample. We supplemented these lists by adding clones
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which had at least one read in the sample as well as more than 50 cells-equivalency gDNA reads within any sample from

the same sequential treatment group (e.g. in either cisplatin, cisplatin to cisplatin, cisplatin to CoCl2, or cisplatin to dabra-

fenib and trametinib for any within this group) to capture the prevalence of clones which expanded in related treatment

groups and were likely to be found in the population. We then supplemented the above lists with clones which had

more than 50 cells in at least one of the four samples from the corresponding sequential treatment group for each

cDNA sample and also had at least one read in the gDNA sample. This ensured that we still analyzed clones that had grown

out in one of the related treatment groups, even if it only had minimal gDNA representation. Finally, we subsetted these lists

to contain only clones with at least 5 cells in each individual cDNA sample. These methods ensured that all resistant clones

had some level of detection in both gDNA and cDNA barcode sequencing without filtering out important clones that were

only highly detected in later treatment groups.

Analysis of transcriptional similarity based on treatment order
We grouped cells from samples that had survived 6.5-8 weeks of any combination of treatment based on whether they received

a combination of dabrafenib and trametinib, CoCl2, or cisplatin as either the first or second treatment. We then calculated pair-

wise Pearson correlations based on the scaled data generated in Seurat65 of 2000 variable genes for all cells within the group.

Additionally, we created random datasets matching the same number of cells for each experimental grouping of cells and

calculated the pairwise Pearson correlations identically. We then performed two-tailed t-tests comparing the pairwise Pearson

correlations of cells grouped by receiving a treatment as either their first or second treatment. We additionally compared each

grouping of cells to the associated random dataset. We repeated this analysis in Figures S3A–S3C, omitting all cells that

received the same treatment twice. For plotting violin plots of pairwise Pearson correlations, we subsampled 10,000,000

random data points.

Clone similarity analysis
We first identified resistant clones with at least five cells in each of the 12 treatment conditions (as described above). We then

calculated the pairwise Pearson correlations in gene expression across the scale.data65 of 2000 variable genes within the cells

from each clone in each condition. Meanwhile, for each clone in each condition, we randomly sampled size-matched controls

from cells that had survived the same treatment 100 times. For each simulation, we compared the average Pearson correlations

of the real clones to those of the simulated clones using a one-sided Wilcoxon Rank Sum Test to test whether the correlation

within the real clones were greater than the simulated clones. In Figure 4, the first simulation for each treatment condition is

displayed.

Induced resistance computational analysis
To find clones with resistance that was induced to survive a treatment by first surviving a different treatment, we identified resistant

clones within each treatment condition with a lenient filter of having more than one sequencing read in the barcodes sequenced from

gDNA. The more lenient determination of whether a clone was resistant to a condition ensured that we accurately identified clones

that had not survived a treatment from those that had survived a condition with only minimal growth such that it was not previously

identified as resistant. We then generated lists of induced clones that only survived a treatment after developing resistance to a

different treatment. We then mined these lists for clones which we had corresponding scRNA-seq data. We then used

FindMarkers in the Seurat package65 to identify genes up- or downregulated in induced clones compared to cells from clones

that had survived the same initial treatment, but were not induced to survive the second treatment (Figures S6A, S6F, and S6G)

with a logfc.threshold of 0.25 and p_val <= 0.05. We then performed directional gene set enrichment of the Molecular Signals Data-

base (v2022.1) collection of hallmark gene sets60,61 using the fgsea package (v1.22.0)63 with a minSize of 5 and maxSize of 500

(Figures S6C, S6H, and S6I).

Gene ontology analysis
We used the FindMarkers method in Seurat65 to create two lists of genes that increased or decreased between the four and

6.5–8 week time points in the same treatment. We input universally normalized Seurat objects (see STAR Methods section

‘‘scRNA-seq analysis’’). We used default parameters for Seurat objects. We only listed genes with a minimum log2 fold change

greater than 0.25 and that were expressed in at least 10% of cells. We added 1 to average expression values when log2 fold

change was calculated. We input these lists into the enrichGO function in the clusterProfiler (v4.8.3)33 library using default pa-

rameters and a p-value cutoff of 0.05. We used Bonferroni corrections to adjust p-values and only analyzed gene ontologies

with q-values of 0.2 or less. Further, we only considered gene sets with a minimum of 10 genes and a maximum of 500 genes.

We displayed gene ontologies that did not pass thresholds in grey and gene ontologies that went up in both directions as yel-

low. We determined ‘‘molecular function’’ gene ontologies. We plotted GO terms based on genes whose expression increased

over time as the -log10(q-value) (resulting in positive values) and those based on genes whose expression decreased over time

as the log10(q-value) (resulting in negative values). We analyzed resistant clones with five or more cells (as described above) at

both time points using the same methodology as applied to whole populations to determine GO terms that had changed within

individual clones.
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Pathway variability analysis
To assess variability at the pathway level between clones and within clones, we quantified pathway activity at the single cell

level for downstream quantification of variability. We used all GO-terms displayed in Figures 6B–6E and S7 and extracted their

gene lists. We then calculated single-cell pathway scores for each GO-term using the UCell (v2.4.0)42 package in R. For sub-

sequent analyses, we only included barcoded clones containing five or more cells at both the first and second time point. To

quantify interclonal variation (between clones), we calculated the mean UCell score per clone and then the coefficient of vari-

ation across the clones (Figures S9A and S9B). To quantify intraclonal variation (within the clone), we calculated the coefficient

of variation on the UCell scores for each cell (Figures S9C and S9D).

Computational analysis of induced resistance validation
We used custom python scripts to count the number of pixels that were covered by nuclei in each image to measure survival in the

dish. In brief, we cropped the images to include only the inside of the well in each square image. We then used the scikit-image

(v0.21.0)64 package to perform gaussian filtering, median filtering, and then Niblack thresholding to establish local thresholds for

areas covered by cells. We binarized these images, converting any pixel where the fluorescence was greater than the local

threshold * 1.01 to be part of a cell (equal to 1) and other pixels to background (equal to 0). We then used scikit-image to remove

objects smaller than 64 pixels to remove small patches of background pixels that passed thresholding. Finally, we removed the

outer ring of pixels in the image that were above threshold due to edge effects and output the total number of filtered pixels above

threshold for further processing. We visually inspected these images to ensure that the resulting binarized images were accurately

reflecting the areas in which cells were located on the dish and thus estimating the cell number. This workflow allowed robust

quantification even when it was not possible to accurately segment cell nuclei in highly confluent resistant clones that have

lost contact inhibition.

In a custom R script, we calculated the average area (in pixels) covered by cells per well. For the first biological replicate (Fig-

ure S6D), we plotted the log2 of the number of pixels and performed a one-sided t-test to evaluate whether IL6ST-high cells had

improved growth in CoCl2 compared to IL6ST-low cells. For the second biological replicate (Figure S6E), which included a plating

control to account for counting errors between the IL6ST-high and low samples, we normalized the total pixel area in the treated wells

by the average pixel area of the corresponding control wells (fixed immediately after the plated cells adhered). Using these plating-

normalized areas, we plotted IL6ST level versus the log-two of the normalized cell area and performed a one-sided t-test on the

normalized area to determine p-values.

Computational analysis of clone abundance during continued treatment of EGFR- and NGFR-high dabrafenib and
trametinib resistant clones
To assess how prolonged combination treatment with dabrafenib and trametinib affected clones with high EGFR or NGFR

expression, we began by clustering the cells sequenced after four and 6.5 weeks of dabrafenib treatment together and forced

Seurat to cluster these cells into only two subclusters using FindClusters with a resolution of 0.015. Based on gene expression

plots, we identified one cluster as EGFR-high and one cluster as NGFR-high, noting that both clusters contained cells from each

duration of treatment. We then identified 44 resistant clones with at least five cells (as defined above) after four weeks of treat-

ment with dabrafenib and trametinib. We then calculated the percentage of cells from each resistant clone that were in the

EGFR- or NGFR-high cluster. We then followed these same 44 clones through to the 6.5 week treatment sample and identified

whether a clone died (defined as no longer being identified as a resistance clone as defined above) and calculated the percent-

age of each surviving clone in each cluster. We then more broadly assessed the survival of the clones by counting how many

cells from each of the 44 clones were present in each of the three samples that had received a secondary round of treatment

(dabrafenib and trametinib to dabrafenib and trametinib, dabrafenib and trametinib to CoCl2, and dabrafenib and trametinib to

cisplatin).

We used the escape package (v1.8.0)66 to calculate single-cell UCell enrichment scores for cells from EGFR-high, NGFR-high,

and mixed clones using the melanocytic, neural crest-like, transitory, and undifferentiated gene sets from Tsoi et al.47 We

compared the expression of these gene states between conditions using an ANOVA followed by Tukey’s honest significant dif-

ference tests.

Computational analysis of EGFR and NGFR HCR RNA FISH
We used Nimbus Image to analyze the HCR FISH data (https://github.com/Kitware/UPennContrast and https://github.com/

arjunrajlaboratory/ImageAnalysisProject/). First, we contrasted DAPI and HCR signal. We then used the DAPI signal to

guide manual circling of individual clone masks. We then annotated each clone as either predominantly EGFR-high, predom-

inantly NGFR-high, clones with evenly mixed expression, and clones that were too ambiguous to classify. Next, we measured

the total DAPI expression within each circled clone mask along with the coordinates of their centroids. Finally, we exported

low resolution snapshots of the images including the masks that were traced, colored, and overlaid on high resolution images

in Adobe Illustrator for Figures 7C and S11A–S11C along with scale bars that were made in ImageJ.62
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ADDITIONAL RESOURCES

Barcode Library
WeperformedDNAbarcodingwith the Rewind library using barcode plasmids provided generously by the Raj Lab at theUniversity of

Pennsylvania and produced as previously described.26 Briefly, PAGE-purified Ultramer oligonucleotides were ordered containing a

100-base pair sequence repeating ‘WSN’, where W = A or T, S = G or C, and N = any base pair, and inserted into a lentivirus

vector backbone downstream of the EFS promoter and GFP sequence. Emert et al. have published a detailed protocol of how these

barcodes are produced (https://www.protocols.io/view/barcode-plasmid-library-cloning-5qpvon6yxl4o/v1),26 and the plasmid

sequence is available (https://benchling.com/shaffer_lab/f/lib_6JXLhfQH-plasmids/seq_BUIxqCk0-lentiefs_gfp_100bp_barcode_

v1/edit?m=slm-GJ609ijArVWmkT8mk8zr).11
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Supplemental Information

Supplemental Figure 1: Cancer cell clones exhibit variable responses to first and second treatments.
(Top) WM989 BRAF V600E mutant melanoma cells with a nuclear GFP tag imaged after four weeks in CoCl2
followed by four weeks in cisplatin. Below are cropped images from the whole well scans showing clones that
grew (orange), survived with low growth (blue), or mostly died (red) in the second treatment. Cisplatin resistant
cells tend to grow on top of each other causing cropped images to look out of focus. Scale bars in whole well
scans are 5 mm while scale bars in cropped scans are 500 μm and apply to all cropped scans.



Supplemental Figure 2: Clonal barcode reads are a quantitative readout for cell number. A) Sequencing
reads of DNA barcodes from gDNA using the CoCl2 to CoCl2 condition as an example. Displayed are the log2(#
of sequencing reads) with the ladder barcodes highlighted in red (1000 cells), blue (500 cells), and green (50
cells). Only barcodes with at least two reads are displayed. B-E) Scatter plots showing barcode abundance
from experiments testing the heritability of resistance phenotypes in dabrafenib, trametinib, CoCl2, and
cisplatin. We transduced melanoma cells with barcodes, allowed them to go through 6 doublings, then split
these into two separate samples per treatment (labeled as split rep 1 and 2 in figure). We applied each of the
different treatments and then quantified cell survival and proliferation by sequencing the barcodes in each
sample. Scatter plots show the Reads Per Million (RPM) normalized reads for each barcode across the two
samples. A high Pearson correlation in the barcode reads indicates that the same barcoded clones are
surviving and proliferating in each sample. F) Heatmaps showing 100 randomly sampled and rank-ordered
clones immediately prior to treatment being applied (baseline) followed by their abundance after initial
treatment with a combination of dabrafenib and trametinib (Dab/Tram), CoCl2, and cisplatin. Individual clones
are colored by the ln(Reads Per Million (RPM) + 1) using data from sequencing clonal barcodes from gDNA of
surviving cells. It should be noted that there are clones whose abundance were below the threshold of
detection in the pretreatment sample, but were detected after the first round of treatment. The total number of
unique clones that were detected before or after initial treatment is displayed below the heatmap, followed by
the number of clones detected after each treatment.



Supplemental Figure 3: Same analysis as Figure 3B while excluding samples that received the same
treatment twice. Displayed is the quantification of cell similarity using pairwise Pearson correlations of gene
expression (top 2000 most variable genes). A) For dabrafenib and trametinib (Dab/Tram), pairwise Pearson
correlations between cells that received Dab/Tram first (T1) were ~3.0-fold higher than the matched random
sampling of cells (R1), while correlations between cells that received Dab/Tram second (T2) were ~55-fold
higher than the matched control (R2) and ~20-fold higher than those that received Dab/Tram first. B) For
cisplatin treatment, pairwise Pearson correlations between cells that received cisplatin first were ~6.5-fold
higher than the matched random sampling of cells, while correlations between cells that received cisplatin
second were ~40-fold higher than the matched control and ~6.1-fold higher than those that received cisplatin
first. C) For CoCl2 treatment, pairwise Pearson correlations between cells that received CoCl2 first were
~20-fold higher than the matched random sampling of cells and ~2.2 fold higher than those that received CoCl2
second, while correlations between cells that received CoCl2 second was ~9.4-fold greater than the matched
random control. All comparisons were statistically significant by a two-sided t-test with p < 2.2e-16. Violin plots
display 10,000,000 subsampled data points per condition, but statistical comparisons and averages were
calculated on non-subsampled data. Mean values are displayed below each graph.



Supplemental Figure 4: UMAPs of each condition individually. UMAP (GEO: GSE253739) projections of
A) dabrafenib and trametinib (Dab/Tram, 3203 cells), B) CoCl2 (4823 cells), C) cisplatin (8303 cells), D)
Dab/Tram to Dab/Tram (6906 cells), E) Dab/Tram to CoCl2 (10184 cells), F) Dab/Tram to cisplatin (7070 cells),
G) CoCl2 to Dab/Tram (1773 cells), H) CoCl2 to CoCl2 (13951 cells), I) CoCl2 to cisplatin (6459 cells), J)
cisplatin to Dab/Tram (2615 cells), K) cisplatin to CoCl2 (5715 cells), and L) cisplatin to cisplatin (3323 cells)
treated cells. The UMAP projections are colored based on their default Seurat65 clustering.



Supplemental Figure 5: Comparing clonal gene expression similarity to size before and after treatment.
A-C) We compared the average pairwise Pearson gene expression correlation (top 2000 most variable genes)
of all clones where we detected at least five cells by scRNA-seq after initial treatment with their abundance in
the gDNA sample collected prior to treatment. D-F) We compared the same clones that have survived one of
the three initial treatments with their size in the gDNA samples collected after initial treatment. G-O) We
compared clones that had survived two rounds of treatment (five or more cells detected by scRNA-seq) with
their size in the gDNA samples collected after two rounds of treatment. In all subpanels, Pearson correlations
between gene expression correlation and clone size are displayed as r = #.



Supplemental Figure 6: Treatment can induce resistance to a second therapy in otherwise sensitive
clones. A) Venn diagram comparing clones that survived dabrafenib and trametinib (Dab/Tram), CoCl2,
Dab/Tram to CoCl2, and CoCl2 to Dab/Tram. Boxed in red are the 666 clones that only survived CoCl2 after
previous treatment with Dab/Tram. Boxed in blue are the 17997 clones that survived Dab/Tram but were still
sensitive to CoCl2. B) UMAP of scRNA-seq data displaying the relative IL6ST expression in untreated cells
from Harmange et al.11 (GEO: GSE237228). The color scale describes log-normalized data. C) We identified
genes differentially expressed between clones boxed in blue and red in A to find pathways enriched and

https://paperpile.com/c/tLoN4p/xhSye


depleted in clones that were induced to survive CoCl2 by Dab/Tram. All pathways displayed were significantly
enriched (p < 0.05), the blue bars indicate that the adjusted p-value was also < 0.05. D) Induced resistance
validation biological replicate 1. The log2(number of pixels covered by cells) were compared at each number of
cells plated: 500, 1000, and 5000. IL6ST-high, dabrafenib and trametinib resistant cells had more survival in
CoCl2 than IL6ST-low cells when seeded at 1000 cells per well as determined by a one-sided t-test with p <
5x10^-5. Other comparisons were not significant (n.s.). Experimental schematic shown in Figure 5D. E)
Induced resistance validation biological replicate 2. These data were normalized to plates fixed the day after
plating to account for potential variation in plating. The log2(normalized number of pixels covered by cells)
were compared at each number of cells plated: 500, 1000, and 5000. IL6ST-high, dabrafenib and trametinib
resistant cells had more survival in CoCl2 than IL6ST-low cells when seeded at 500 (p < 5x10^-3) and 1000 (p
< 5x10^-4) cells per well as determined by a one-sided t-test. Other comparisons were not significant (n.s.).
Experimental schematic shown in Figure 5D. The data for the 1000 cells per well seeding is also displayed in
Figure 5F. F) Venn diagram comparing clones that survived Dab/Tram, cisplatin, Dab/Tram to cisplatin, and
cisplatin to Dab/Tram. Boxed in red are the 791 clones that only survived Dab/Tram after previous treatment
with cisplatin. Boxed in blue are the 18805 clones that survived cisplatin but were still sensitive to Dab/Tram.
G) Venn diagram comparing clones that survived CoCl2, cisplatin, CoCl2 to cisplatin, and cisplatin to CoCl2.
Boxed in red are the 2908 clones that only ever survived Dab/Tram after previous treatment with cisplatin.
Boxed in blue are the 23885 clones that survived cisplatin but were still sensitive to Dab/Tram. H) Differentially
expressed pathways in clones with resistance to Dab/Tram induced by cisplatin. All pathways displayed were
significantly enriched (p < 0.05), the blue bars indicate that the adjusted p-value was also < 0.05. I)
Differentially expressed pathways in clones with resistance to CoCl2 induced by cisplatin. All pathways
displayed were significantly enriched (p < 0.05), the blue bars indicate that the adjusted p-value was also <
0.05.





Supplemental Figure 7: Gene Ontology comparing cells in the same agent after first and second
treatment. We compared cells from the same agent after the first and second round of treatment, identifying
differentially expressed genes between the two. We then identified GO terms enriched after either the first
round of treatment (four weeks, blue) or after the second round of treatment (6.5 or eight weeks, red) based on
the log10(q-value) and -log10(q-value) respectively. GO terms that were not significantly enriched, or failed other
thresholds, in either direction for a condition are colored in grey. Subpanels A-G show the same pathways in
the same order as in Figure 6B, showing the pathways that make up each category. H) The “other” category
includes all of the pathways that were significant in at least one of the three comparisons that we did not group
into one of the seven other categories. Column labels indicate the agent from which cells after the first and
second round of treatment were compared.



Supplemental Figure 8: Changes in UCell scoring of pathway activity show similar trends to GO
enrichment over time. (Top) Figure 6B highlighting cellular respiration in CoCl2 treatment and transcription
and translation in cisplatin treatment. The color scale shows the log10(q-value) of directional enrichment.
(Bottom left) The average UCell score across all CoCl2-resistant clones (at least five cells detected by
scRNA-seq at both timepoints) for cellular respiration is shown at four weeks and eight weeks for the 21 GO
terms analyzed. The UCell score for all 21 pathways decreased over time which mirrored the global decrease
in enrichment in Figure 6B. (Bottom right) The average UCell score across all cisplatin-resistant clones (at
least five cells detected by scRNA-seq at both timepoints) for transcription and translation is shown at four
weeks and eight weeks for the 22 GO terms analyzed. The UCell score for all 22 pathways increased over time
which mirrored the increases in enrichment in Figure 6B.



Supplemental Figure 9: Quantification of pathway variability across (interclonal) and within clones
(intraclonal). A,B) Heatmaps displaying coefficients of variations across clones calculated using the average
UCell enrichment score for each clone detected within a treatment. The left plot (A) is after four weeks of
treatment. The right plot (B) is after 6.5 weeks (dabrafenib and trametinib, Dab/Tram) or eight weeks (cisplatin
and CoCl2) of treatment. Color scale legend for the coefficient of variation is shown in white (0) to black (0.6).
C,D) Heatmaps displaying coefficients of variations within clones calculated using the UCell enrichment scores
of every cell within resistant clones. Left plots (C) are after four weeks of treatment. Right plots (D) are after 6.5



(Dab/Tram) or eight weeks (cisplatin and CoCl2) of treatment. The top row for each condition displays the
variation across clones from A and B. Color scale legend for the coefficient of variation is shown in white (0) to
black (>=2.4). Color scales used in A and B are different from color scales used in C and D such that the
differences are visible. Both color scales are linear.



Supplemental Figure 10: Dabrafenib and trametinib treated cells enter either an EGFR- or NGFR-high
state. A) UMAP (GEO: GSE253739) projection of cells that have only been treated with dabrafenib and
trametinib (Dab/Tram) after the first (four weeks) and second (6.5 weeks) rounds of treatment. The cells cluster
predominantly by condition, but also have overlap between conditions. Relative expression of B) EGFR or C)
NGFR. Color scales are of log-normalized data. Cells expressing these markers are largely mutually exclusive.
D) We constrained Seurat clustering to only allow two total clusters65. We denoted these clusters as
EGFR-high and NGFR-high based on their correlation with the markers. We identified clones with at least five
cells after initial Dab/Tram treatment and classified them as EGFR-high, mixed clones, and NGFR-high. We
then measured the number of sequenced single-cells from these clones after secondary treatment with E)
Dab/Tram, F) CoCl2, G) and cisplatin treatment, displayed as ln(# of cells + 1). UCell scores from cells from



EGFR-high, NGFR-high, and mixed clones based on H) melanocytic, I) transitory, J) neural crest-like, and K)
undifferentiated gene sets defined by Tsoi et al.47. * is p value < 0.05 by ANOVA followed by Tukey’s honest
significance difference test.



Supplemental Figure 11: Hybridization Chain Reaction of dabrafenib and trametinib resistant clones.
A-C) Resistant clones were generated by treating WM989 A6-G3 melanoma cells with dabrafenib and
trametinib for 6.5 weeks. We used Hybridization Chain Reaction (HCR) to label individual EGFR (magenta
spots) and NGFR (green spots) transcripts within cells. Cell nuclei were stained with DAPI (grey). We then
circled clones and classified them as predominantly EGFR-high (magenta), predominantly NGFR-high (green),
mixed (yellow), or ambiguous (grey). In B, the dotted line outlines the region of replicate 2 displayed in Figure
7C. Scale bars are 2 mm. D-E) Quantification of clone sizes based on total DAPI fluorescence within circled
clones from B (Replicate 2) and C (Replicate 3). Data is rank-ordered based on clone size and clones are
colored based on their classification: EGFR-high, NGFR-high, mixed, or ambiguous.



Supplemental Figure 12: Extreme subsampling prevents tracing individual clones through multiple
rounds of treatment. A) (Left) UMAP (GEO: GSE253739) displays cells from the three samples that only
received one treatment. Cells are colored by the treatment received. (Right) Venn diagram of clones resistant
(with at least five cells detected by scRNA-seq) to each initial treatment. Only one clone survived more than
one initial treatment. B) (Left) UMAP of the cells that only received cisplatin as an initial treatment. (Right) Venn
diagram of clones resistant to each secondary treatment after initial treatment with cisplatin. The number of
clones that survived multiple secondary treatments are boxed in either green, blue, or red. Cells from these
clones are colored on the UMAP (left). The remaining cells are left grey. C) (Left) UMAP of the cells that only
received CoCl2 as an initial treatment. (Right) Venn diagram of clones resistant to each secondary treatment
after initial treatment with CoCl2. The number of clones that survived multiple secondary treatments are boxed
in either green, blue, or red. Cells from these clones are colored on the UMAP (left). The remaining cells are
left grey. An arrow indicates a condition where clones were identified as resistant to a second treatment, but
were not detected in the initial treatment UMAP due to subsampling. D) (Left) UMAP of the cells that only
received combination treatment with dabrafenib and trametinib (Dab/Tram) as an initial treatment. (Right) Venn
diagram of clones resistant to each secondary treatment after initial treatment with Dab/Tram. The number of
clones that survived multiple secondary treatments are boxed in either blue or red. Cells from these clones are
colored on the UMAP (left). The remaining cells are left grey. An arrow indicates a condition where clones were
identified as resistant to a second treatment, but were not detected in the initial treatment UMAP due to



subsampling. E) (Left) UMAP displaying Dab/Tram to CoCl2 and CoCl2 to Dab/Tram. Cells are colored by
treatment condition. (Right) Venn diagram showing that only a single clone was resistant to both sets of
treatments. F) (Left) UMAP displaying Dab/Tram to cisplatin and cisplatin to Dab/Tram. Cells are colored by
treatment condition. (Right) Venn diagram showing that no clones were resistant to both sets of treatments. G)
(Left) UMAP displaying CoCl2 to cisplatin and cisplatin to CoCl2. Cells are colored by treatment condition.
(Right) Venn diagram showing that no clones were resistant to both sets of treatments.



Supplemental Table 1

GHi5.2.1 AATGATACGGCGACCACCGAGATCTACACTAGATCGCACACTCTTTCCCTACACGACGCT
CTTCCGATCTNHNNNNTCGACTAAACGCGCTACTTG

GHi5.2.2 AATGATACGGCGACCACCGAGATCTACACCTCTCTATACACTCTTTCCCTACACGACGCT
CTTCCGATCTNHNNNNCGTCGACTAAACGCGCTACTTG

GHi5.2.3 AATGATACGGCGACCACCGAGATCTACACTATCCTCTACACTCTTTCCCTACACGACGCT
CTTCCGATCTNHNNNNGACTCGACTAAACGCGCTACTTG

GHi5.2.4 AATGATACGGCGACCACCGAGATCTACACAGAGTAGAACACTCTTTCCCTACACGACGC
TCTTCCGATCTNHNNNNATAGTCTCGACTAAACGCGCTACTTG

GHi5.2.5 AATGATACGGCGACCACCGAGATCTACACGTAAGCAGACACTCTTTCCCTACACGACGC
TCTTCCGATCTNHNNNNTACGTCGACTAAACGCGCTACTTG

GHi5.2.6 AATGATACGGCGACCACCGAGATCTACACACTGCGTAACACTCTTTCCCTACACGACGCT
CTTCCGATCTNHNNNNCCTAATCGACTAAACGCGCTACTTG

GHi5.2.7 AATGATACGGCGACCACCGAGATCTACACAAGGAGTAACACTCTTTCCCTACACGACGC
TCTTCCGATCTNHNNNNTCGACTAAACGCGCTACTTG

GHi5.2.8 AATGATACGGCGACCACCGAGATCTACACCTAAGCCTACACTCTTTCCCTACACGACGCT
CTTCCGATCTNHNNNNGCTCGACTAAACGCGCTACTTG

GHi5.2.9 AATGATACGGCGACCACCGAGATCTACACCGTCTAATACACTCTTTCCCTACACGACGCT
CTTCCGATCTNHNNNNCTGTCGACTAAACGCGCTACTTG

GHi5.2.10 AATGATACGGCGACCACCGAGATCTACACTCTCTCCGACACTCTTTCCCTACACGACGCT
CTTCCGATCTNHNNNNTATCAGTCGACTAAACGCGCTACTTG

GHi5.2.11 AATGATACGGCGACCACCGAGATCTACACTCGACTAGACACTCTTTCCCTACACGACGCT
CTTCCGATCTNHNNNNATGCTCGACTAAACGCGCTACTTG

GHi5.2.12 AATGATACGGCGACCACCGAGATCTACACTTCTAGCTACACTCTTTCCCTACACGACGCT
CTTCCGATCTNHNNNNGGATATCGACTAAACGCGCTACTTG

GHi7.2.1 CAAGCAGAAGACGGCATACGAGATTAAGGCGAGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTGTCCTGCTGGAGTTCGTGAC

GHi7.2.2 CAAGCAGAAGACGGCATACGAGATCGTACTAGGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTAGGTCCTGCTGGAGTTCGTGAC

GHi7.2.3 CAAGCAGAAGACGGCATACGAGATAGGCAGAAGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTTCAAGTCCTGCTGGAGTTCGTGAC

GHi7.2.4 CAAGCAGAAGACGGCATACGAGATTCCTGAGCGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTCACTTAAGTCCTGCTGGAGTTCGTGAC

GHi7.2.5 CAAGCAGAAGACGGCATACGAGATCGACTCCTGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTTGTCCTGCTGGAGTTCGTGAC

GHi7.2.6 CAAGCAGAAGACGGCATACGAGATTAGGCATGGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTCTTGAGTCCTGCTGGAGTTCGTGAC

GHi7.2.7 CAAGCAGAAGACGGCATACGAGATATCGCTACGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTGTAGTCCTGCTGGAGTTCGTGAC

GHi7.2.8 CAAGCAGAAGACGGCATACGAGATCAGAGAGTGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTGATACTGTCCTGCTGGAGTTCGTGAC

GH_i5.1.1 AATGATACGGCGACCACCGAGATCTACACCTAGCGCTACACTCTTTCCCTACACGACGC
TCTTCCGATCT

GH_i5.2.1 AATGATACGGCGACCACCGAGATCTACACTCGATATCACACTCTTTCCCTACACGACGCT
CTTCCGATCT

GH_i7.3.1 CAAGCAGAAGACGGCATACGAGATGTCTCTACGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTAGGACGAGCTGTACAAGTAGG

Primers for amplifying barcodes from cdna

Primers for amplifying barcodes from gdna



GH_i7.3.2 CAAGCAGAAGACGGCATACGAGATCAGATAGTGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTCTGGACGAGCTGTACAAGTAGG

GH_i7.3.3 CAAGCAGAAGACGGCATACGAGATTCTACGCAGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTTGCGGACGAGCTGTACAAGTAGG

GH_i7.3.4 CAAGCAGAAGACGGCATACGAGATCGACTCTGGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTGCTCGGACGAGCTGTACAAGTAGG

i7.3.5 CAAGCAGAAGACGGCATACGAGATACGCATTCGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTGGACGAGCTGTACAAGTAGG

i7.3.6 CAAGCAGAAGACGGCATACGAGATTTCTGAATGTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTAGTACGGACGAGCTGTACAAGTAGG



Supplemental Table 2

Number of initial 
barcoded cells 

counted by hand

Number of cells 
on day0 

counted by 
hand

Number of 
doublings by 

day0
425000 18412500 5.437078874

Estimated 
number of cells 

frozen for 
barcode 

sequencing at 
day0 (1/3 total)

Number of 
unique clones 

detected at 
day0 and after 

initial 
treatments 

(Union of Fig. 
2D and Supp. 

Fig. 2F)

Number of cells 
going into each 
initial treatment

Estimated 
average number 

of cells per 
clone going into 

each initial 
treatment (based 

on counted 
number of 

clones)

Estimated 
average 

number of cells 
per clone going 
into each initial 

treatment 
(based on 
detected 
clones)

6137500 60137 4050000 9.529411765 67.34622612
^ 18 plates at 

225,000 
cells/plate
at day0

18287500

Initial treatment

Number of 
unique clones 

detected at 
initial and 
secondary 

treatments (Fig. 
2D)

Number of 
counted cells 

after treatment

Number of cells 
frozen for 
barcode 

sequencing
Number of total 
wells replated

Cells/well 
replating

Number of 
cells going 
into each 

secondary 
treatment

Estimated 
average 

number of cells 
per clone going 

into each 
secondary 
treatment

trametinib 1350 245125 61281.25 9 20400 61200 45.33333333
CoCl2 895 508800 116070 15 25400 127000 141.8994413

cisplatin 8606 1440000 360000 48 24125 386000 44.85242854

Initial cell numbers and growth statistics prior to 
treatment

Estimated cell numbers and clones sizes entering initial treatment

Estimated cell numbers entering secondary treatments
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